1
|
Puja H, Bianchetti L, Revol-Tissot J, Simon N, Shatalova A, Nommé J, Fritsch S, Stote RH, Mislin GLA, Potier N, Dejaegere A, Rigouin C. Biosynthesis of a clickable pyoverdine via in vivo enzyme engineering of an adenylation domain. Microb Cell Fact 2024; 23:207. [PMID: 39044227 PMCID: PMC11267755 DOI: 10.1186/s12934-024-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024] Open
Abstract
The engineering of non ribosomal peptide synthetases (NRPS) for new substrate specificity is a potent strategy to incorporate non-canonical amino acids into peptide sequences, thereby creating peptide diversity and broadening applications. The non-ribosomal peptide pyoverdine is the primary siderophore produced by Pseudomonas aeruginosa and holds biomedical promise in diagnosis, bio-imaging and antibiotic vectorization. We engineered the adenylation domain of PvdD, the terminal NRPS in pyoverdine biosynthesis, to accept a functionalized amino acid. Guided by molecular modeling, we rationally designed mutants of P. aeruginosa with mutations at two positions in the active site. A single amino acid change results in the successful incorporation of an azido-L-homoalanine leading to the synthesis of a new pyoverdine analog, functionalized with an azide function. We further demonstrated that copper free click chemistry is efficient on the functionalized pyoverdine and that the conjugated siderophore retains the iron chelation properties and its capacity to be recognized and transported by P. aeruginosa. The production of clickable pyoverdine holds substantial biotechnological significance, paving the way for numerous downstream applications.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
- Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
| | - Laurent Bianchetti
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Johan Revol-Tissot
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
- Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
| | - Nicolas Simon
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Anastasiia Shatalova
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Julian Nommé
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Sarah Fritsch
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
- Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
| | - Roland H Stote
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
- Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France
| | - Noëlle Potier
- CNRS, UMR7140 Chimie de la Matière Complexe, Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes, Université de Strasbourg, 4 Rue Blaise Pascal, 67082, Strasbourg, France
| | - Annick Dejaegere
- Département de Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Coraline Rigouin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France.
- Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, 67412, Illkirch-Graffenstaden, France.
| |
Collapse
|
2
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
3
|
Peukert C, Gasser V, Orth T, Fritsch S, Normant V, Cunrath O, Schalk IJ, Brönstrup M. Trojan Horse Siderophore Conjugates Induce Pseudomonas aeruginosa Suicide and Qualify the TonB Protein as a Novel Antibiotic Target. J Med Chem 2023; 66:553-576. [PMID: 36548006 PMCID: PMC9841981 DOI: 10.1021/acs.jmedchem.2c01489] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Rising infection rates with multidrug-resistant pathogens calls for antibiotics with novel modes of action. Herein, we identify the inner membrane protein TonB, a motor of active uptake in Gram-negative bacteria, as a novel target in antimicrobial therapy. The interaction of the TonB box of outer membrane transporters with TonB is crucial for the internalization of essential metabolites. We designed TonB box peptides and coupled them with synthetic siderophores in order to facilitate their uptake into bacteria in up to 32 synthetic steps. Three conjugates repressed the growth of Pseudomonas aeruginosa cells unable to produce their own siderophores, with minimal inhibitory concentrations between 0.1 and 0.5 μM. The transporters mediating uptake of these compounds were identified as PfeA and PirA. The study illustrates a variant of cellular suicide where a transporter imports its own inhibitor and demonstrates that artificial siderophores can import cargo with molecular weights up to 4 kDa.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Véronique Gasser
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Till Orth
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sarah Fritsch
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Vincent Normant
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Olivier Cunrath
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Isabelle J. Schalk
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for
Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
4
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
5
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
6
|
Nodwell MB, Britton R. Enterobactin on a Bead: Parallel, Solid Phase Siderophore Synthesis Reveals Structure-Activity Relationships for Iron Uptake in Bacteria. ACS Infect Dis 2021; 7:153-161. [PMID: 33290047 DOI: 10.1021/acsinfecdis.0c00687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A solid-phase platform for the precise and sequential synthesis of enterobactin analogues is described. This chemistry unites the power of solid-phase peptide synthesis with the unique opportunities and applications offered by siderophore chemistry. Here, a series of hybrid enterobactin hydroxamate/catecholate (HEHC) analogues were synthesized using both catechols and amino acid derived hydroxmate chelators. The HEHC analogues were evaluated for their ability to bind free iron and to promote growth in siderophore-auxotrophic mutant bacteria. We find that, in contrast to S. aureus or E. coli, a number of HEHC analogues promote growth in P. aeruginosa and structure-activity relationships (SARs) exist for the growth promotion via HEHC analogues in this organism.
Collapse
Affiliation(s)
- Matthew B. Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| |
Collapse
|
7
|
Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem 2020; 208:112791. [DOI: 10.1016/j.ejmech.2020.112791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
|
8
|
Al Shaer D, de la Torre BG, Albericio F. Protocol for efficient solid-phase synthesis of peptides containing 1-hydroxypyridine-2-one (1,2-HOPO). MethodsX 2020; 7:101082. [PMID: 33083243 PMCID: PMC7551356 DOI: 10.1016/j.mex.2020.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
Metal chelation has found many applications that directly affect human's life. Natural siderophores are one of the most potent chelators for Fe (III) 1-Hydroxypyridine-2-one (1,2-HOPO) (Fig. 1a), which is shown in 4-carboxy-1-hydroxypyridin-2-one (1,2-HOPO-4-COOH) (Fig. 1b), is a moiety that electronically resembles the hydroxamate group found in natural siderophores (Fig. 1c). Of note, 1,2-HOPO moiety is present in the natural siderophore cepabactin [1] Synthesis of 1,2-HOPO containing chelators has been carried in solid phase using carboxylic acid derivatives of 1,2-HOPO and required the protection of the reactive hydroxyl group usually with benzyl group (Bzl). After the peptide elongation, the Bzl group has been removed on the same solid phase using a bit harsh conditions: 0.1 M BBr3 in DCM for 60 min [2], 10% HBr in AcOH for 14 h [3]; in solution: 1 M BCl3 in DCM for 2 d [4], 50% HCl in AcOH for 4 d [5], H2-Pd/C, AcOH-MeOH [6]. First of all, a method for the incorporation of the 1,2-HOPO-4-COOH through its carboxyl group into the peptide backbone without protecting the N-OH is proposed (the presence of the carboxyl group facilitates the attachment). Furthermore, in the cases that Bzl protection is required for the N-OH, a friendlier method for removing the Bzl is described. The removal of the Bzl is done concomitantly to the global deprotection and cleavage of the peptide from the resin using TFA- TFMSA-H2O (8:3:1).
Collapse
Affiliation(s)
- Danah Al Shaer
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa.,Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, Acosta-Guzmán P. Recent Progress in the Synthesis of Naturally Occurring Siderophores. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis; Bio and Organocatalysis; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Yovanny Quevedo-Acosta
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
- Institute of Chemistry; Bio and Organocatalysis Chemistry Department; State University of Campinas; Rua Monteiro Lobato 270 13083-862 Campinas Brazil
| | - Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Paola Acosta-Guzmán
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| |
Collapse
|
10
|
Ironing out pyoverdine's chromophore structure: serendipity or design? J Biol Inorg Chem 2019; 24:659-673. [PMID: 31214860 DOI: 10.1007/s00775-019-01678-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Pyoverdines are Pseudomonas aeruginosa's primary siderophores. These molecules, composed of a fluorescent chromophore attached to a peptide chain of 6-14 amino acids, are synthesized by the bacterium to scavenge iron (essential to its survival and growth) from its environment. Hijacking the siderophore pathway to use pyoverdine-antibiotic compounds in a Trojan horse approach has shown promise but remains very challenging because of the synthetic efforts involved. Indeed, both possible approaches (grafting an antibiotic on pyoverdine harvested from Pseudomonas or designing a total synthesis route) are costly, time-consuming and low-yield tasks. Designing comparatively simple analogs featuring the salient properties of the original siderophore is thus crucial for the conception of novel antibiotics to fight bacterial resistance. In this work, we focus on the replacement of the pyoverdine chromophore, a major roadblock on the synthetic pathway. We propose three simpler analogs and evaluate their ability to complex iron and interact with the FpvA transporter using molecular modeling techniques. Based on these results, we discuss the role of the native chromophore's main features (polycyclicity, positive charge, flexibility) on pyoverdine's ability to bind iron and be recognized by membrane transporter FpvA and propose guidelines for the design of effective synthetic siderophores.
Collapse
|
11
|
Novák J, Škríba A, Zápal J, Kuzma M, Havlíček V. CycloBranch: An open tool for fine isotope structures in conventional and product ion mass spectra. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1097-1103. [PMID: 30160332 DOI: 10.1002/jms.4285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Within the growing community of Fourier transform mass spectrometry users, the identification of fine isotope structure has become an indispensable method for molecular formula determination. In this work, the fine isotope envelopes for accessing the mutual ratio of 2 closely related pyoverdines in a mixture were used. Bacterial siderophores pyoverdines D and E cannot be easily separated via liquid chromatography-mass spectrometry because their structures differ in (de)amidation at the respective chromophore parts only. Their mutual ratio was determined in a mixture via nuclear magnetic resonance spectroscopy and semiquantitative mass spectrometry using our open-source software CycloBranch, which represents a genuine free tool supporting the determination of fine isotope structures in both conventional and product ion mass spectra. Native Bruker, Thermo, and Waters data formats are supported in addition to XML and plain text formats.
Collapse
Affiliation(s)
- Jiří Novák
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Anton Škríba
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Zápal
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
12
|
Besserglick J, Olshvang E, Szebesczyk A, Englander J, Levinson D, Hadar Y, Gumienna-Kontecka E, Shanzer A. Ferrichrome Has Found Its Match: Biomimetic Analogues with Diversified Activity Map Discrete Microbial Targets. Chemistry 2017; 23:13181-13191. [DOI: 10.1002/chem.201702647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jenny Besserglick
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Evgenia Olshvang
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Agnieszka Szebesczyk
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joseph Englander
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Dana Levinson
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | | | - Abraham Shanzer
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
13
|
Wang X, Liu C, Zeng X, Wang X, Wang X, Hu Y. Ruthenium-Catalyzed Synthesis of Fused Tricyclic 1H-2,3-Dihydropyrimido[1,2-a]quinolines in One Step. Org Lett 2017; 19:3378-3381. [DOI: 10.1021/acs.orglett.7b01330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingyong Wang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chulong Liu
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobao Zeng
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xuesong Wang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones. Sci Rep 2016; 6:36316. [PMID: 27805054 PMCID: PMC5090868 DOI: 10.1038/srep36316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
An efficient synthesis of novel 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones has been reported. Inexpensive and readily available substrates, environmentally benign reaction condition, and product formation up to quantitative yield are the key features of this methodology. Products are formed by the aza-Michael addition followed by intramolecular acyl substitution in a domino process. The polar nature and strong hydrogen bond donor capability of 1,1,1,3,3,3-hexafluoropropan-2-ol is pivotal in this cascade protocol.
Collapse
|
15
|
Cherkupally P, Ramesh S, Govender T, Kruger HG, de la Torre BG, Albericio F. An efficient solid-phase strategy for total synthesis of naturally occurring amphiphilic marine siderophores: amphibactin-T and moanachelin ala-B. Org Biomol Chem 2015; 13:4760-8. [PMID: 25806414 DOI: 10.1039/c5ob00100e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganisms such as bacteria, fungi and some plants secrete an abundance of suites of low molecular weight, high-affinity iron(iii)-chelating acylated siderophores. The peptide composition of a suite of amphiphilic siderophores generated by a Vibrio species, isolated from oligotrophic open ocean water, contained the same iron(iii)-scavenging polar head group and is attached to a fatty acid. In the present study, we report the first total synthesis of the naturally obtainable marine siderophores amphibactin-T and moanachelin ala-B on solid-phase using standard Fmoc-chemistry. Furthermore, we discuss the preparation of orthogonal protected Orn amino acid 'N(α)-Fmoc-N(δ)-(acetyl)-N(δ)-(benzoyloxy)-ornithine' [Fmoc-Orn(Ac,OBz)-OH], which is the most important constructive building block for amphibactin and moanachelin siderophores syntheses. The applications of this Orn unit on solid-phase have also been discussed.
Collapse
Affiliation(s)
- Prabhakar Cherkupally
- Catalysis and Peptide Research Unit, School of Health Sciences, University of Kwazulu-Natal, Durban 4001, South Africa.
| | | | | | | | | | | |
Collapse
|
16
|
Synthesis and antibacterial activity of catecholate–ciprofloxacin conjugates. Bioorg Med Chem 2014; 22:4049-60. [DOI: 10.1016/j.bmc.2014.05.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
|
17
|
Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014; 6:408-20. [PMID: 24481292 DOI: 10.1039/c3mt00359k] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- UMR 7242, Université de Strasbourg-CNRS, ESBS, 300 Boulevard, Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|