1
|
Fuke K, Miura T. Visible-light-driven 1,2-hydro(cyanomethylation) of alkenes with chloroacetonitrile. Org Biomol Chem 2023; 21:8642-8645. [PMID: 37869787 DOI: 10.1039/d3ob01533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A regioselective 1,2-hydro(cyanomethylation) of unactivated aliphatic alkenes is reported. A cyanomethyl radical is generated from haloacetonitriles. This radical adds onto alkenes to form alkyl radicals, which undergo hydrogen atom transfer from thiol to produce one-carbon-extended nitriles. Furthermore, the alkyl radicals are applied to cascade cyclization.
Collapse
Affiliation(s)
- Keito Fuke
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan.
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Lusi RF, Sennari G, Sarpong R. Strategy Evolution in a Skeletal Remodeling and C-H Functionalization-Based Synthesis of the Longiborneol Sesquiterpenoids. J Am Chem Soc 2022; 144:17277-17294. [PMID: 36098550 DOI: 10.1021/jacs.2c08136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed herein are our synthesis studies of longiborneol and related natural products. Our overarching goals of utilizing a "camphor first" strategy enabled by skeletal remodeling of carvone, and late-stage diversification using C-H functionalizations, led to divergent syntheses of the target natural products. Our initial approach proposed a lithiate addition to unite two fragments followed by a Conia-ene or Pd-mediated cycloalkylation reaction sequence to install the seven-membered ring emblematic of the longibornane core. This approach was unsuccessful and evolved into a revised plan that employed a Wittig coupling and a radical cyclization to establish the core. A reductive radical cyclization, which was explored first, led to a synthesis of copaborneol, a structural isomer of longiborneol. Alternatively, a metal-hydride hydrogen atom transfer-initiated cyclization was effective for a synthesis of longiborneol. Late-stage C-H functionalization of the longibornane core led to a number of hydroxylated longiborneol congeners. The need for significant optimization of the strategies that were employed as well as the methods for C-H functionalization to implement these strategies highlights the ongoing challenges in applying these powerful reactions. Nevertheless, the reported approach enables functionalization of every natural product-relevant C-H bond in the longibornane skeleton.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States.,O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Hirata T, Ogasawara Y, Kobayashi S, Yamashita Y. Photocatalytic Addition Reactions of Ketene Silyl Acetals with Alkenes through Formation of α-Carbonyl Radicals. Chem Asian J 2022; 17:e202200647. [PMID: 35878061 DOI: 10.1002/asia.202200647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/22/2022] [Indexed: 11/08/2022]
Abstract
Addition reactions of ketene silyl acetals with alkenes that do not have an electron-withdrawing group are generally difficult because the nucleophilicity of ketene silyl acetals and the electrophilicity of alkenes are not sufficient. Herein, we report photocatalytic addition reactions of ketene silyl acetals with alkenes that proceed through formation of α-carbonyl radicals. In the presence of an appropriate protic additive, the reactions proceeded smoothly under blue-light irradiation to afford the desired products in moderate to high yields.
Collapse
Affiliation(s)
- Tsubasa Hirata
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry, JAPAN
| | | | - Shu Kobayashi
- The University of Tokyo, Department of Chemistry, School of Science, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, JAPAN
| | | |
Collapse
|
4
|
Sen PP, Roy VJ, Raha Roy S. Electrochemical Activation of the C-X Bond on Demand: Access to the Atom Economic Group Transfer Reaction Triggered by Noncovalent Interaction. J Org Chem 2022; 87:9551-9564. [PMID: 35816013 DOI: 10.1021/acs.joc.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atom economic method demonstrates the involvement of noncovalent interaction via hydrogen or halogen bonding interaction in triggering paired electrolysis for the group transfer reactions. Specifically, this method demonstrated the bromination of several aromatic and heteroaromatic compounds through the activation of the C(sp3)-Br bond of organic-bromo derivatives on demand. This electrochemical protocol is mild, and mostly no additional electrolyte is needed, which makes the workup process straightforward. Unlike the existing regioselective monobromination methods, this work utilizes a relatively small amount (1.2 equiv) of bromine surrogates that releases bromine on demand under the electrochemical condition and after completion of the reaction generates acetophenone as a useful byproduct. Green metrics indicate this protocol has a very good atom efficiency with an E-factor of 26.86 kg of waste/1 kg of product. In addition to the scale-up process, this strategy could be extended to the transfer of chlorine and thioaryl units. An extensive mechanistic study is accomplished to validate the hypothesis of noncovalent interaction using computational, spectroscopic, and cyclic voltammetry studies. Finally, the applicability of this newly developed nonbonding interaction to trigger paired electrolysis was extended to the chemoselective debromination of several dihalo organic compounds.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Liu J, Tang S, Wang S, Cao M, Zhao J, Zhang P, Li P. Visible-Light-Induced 1,6-Enynes Triggered C-Br Bond Homolysis of Bromomalonates: Solvent-Controlled Divergent Synthesis of Carbonylated and Hydroxylated Benzofurans. J Org Chem 2022; 87:9250-9258. [PMID: 35749743 DOI: 10.1021/acs.joc.2c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light-induced 1,6-enyne-triggered C-Br bond homolysis of bromomalonates has been developed. This transition-metal-free, photocatalyst-free, and oxidant- and additive-free protocol affords an efficient approach for divergent synthesis of carbonylated and hydroxylated benzofurans from 1,6-enynes and bromomalonates under mild conditions. Significantly, mechanistic studies reveal that the homolysis of C-Br bonds appears to experience an energy-transfer pathway, and the atom-transfer radical addition products are the key intermediates to generate carbonylated and hydroxylated benzofurans.
Collapse
Affiliation(s)
- Jiupeng Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shuo Tang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Mengting Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Puyu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
6
|
Liu KM, Wang PY, Guo ZY, Xiong DC, Qin XJ, Liu M, Liu M, Xue WY, Ye XS. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202114726. [PMID: 35133053 DOI: 10.1002/anie.202114726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 01/02/2023]
Abstract
The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with β-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.
Collapse
Affiliation(s)
- Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhen-Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
7
|
Hu L, Li R, Deng W, Sun Z. Visible-light induced green synthesis of γ-deuterated carbonyl compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu K, Wang P, Guo Z, Xiong D, Qin X, Liu M, Liu M, Xue W, Ye X. Iterative Synthesis of 2‐Deoxyoligosaccharides Enabled by Stereoselective Visible‐Light‐Promoted Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Peng‐Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Zhen‐Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University Nanjing 210023 Jiangsu China
| | - Xian‐Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Wan‐Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
9
|
Su YL, Liu GX, De Angelis L, He R, Al-Sayyed A, Schanze KS, Hu WH, Qiu H, Doyle MP. Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S. Schanze
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Wen-Hao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
10
|
Silva TS, Coelho F. Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances. Beilstein J Org Chem 2021; 17:1565-1590. [PMID: 34290837 PMCID: PMC8275869 DOI: 10.3762/bjoc.17.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Olefin double-bond functionalization has been established as an excellent strategy for the construction of elaborate molecules. In particular, the hydroalkylation of olefins represents a straightforward strategy for the synthesis of new C(sp3)–C(sp3) bonds, with concomitant formation of challenging quaternary carbon centers. In the last 20 years, numerous hydroalkylation methodologies have emerged that have explored the diverse reactivity patterns of the olefin double bond. This review presents examples of olefins acting as electrophilic partners when coordinated with electrophilic transition-metal complexes or, in more recent approaches, when used as precursors of nucleophilic radical species in metal hydride hydrogen atom transfer reactions. This unique reactivity, combined with the wide availability of olefins as starting materials and the success reported in the construction of all-carbon C(sp3) quaternary centers, makes hydroalkylation reactions an ideal platform for the synthesis of molecules with increased molecular complexity.
Collapse
Affiliation(s)
- Thiago S Silva
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| |
Collapse
|
11
|
Bromine radical as a visible-light-mediated polarity-reversal catalyst. iScience 2021; 24:102693. [PMID: 34222843 PMCID: PMC8243021 DOI: 10.1016/j.isci.2021.102693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022] Open
Abstract
Polarity-reversal catalysts enable otherwise sluggish or completely ineffective reactions which are characterized by unfavorable polar effects between radicals and substrates. We herein disclose that when irradiated by visible light, bromine can behave as a polarity-reversal catalyst. Hydroacylation of vinyl arenes, a three-component cascade transformation and deuteration of aldehydes were each achieved in a metal-free manner without initiators by using inexpensive N-bromosuccinimide as the precatalyst. Light is essential to generate and maintain the active bromine radical during the reaction process. Another key to success is that HBr can behave as an effective hydrogen donor to turn over the catalytic cycles. Using bromine as a polarity-reversal catalyst to generate acyl radicals Additive- and metal-free, atom- and step-economic, and operationally simple process Using constant light-irradiation to induce and maintain bromine radicals Access carbonyl compounds and deuterated aldehydes with wide substrate scope
Collapse
|
12
|
Abstract
A general method for the hydroalkylation of electron-rich terminal and non-terminal alkenes such as enol esters, alkenyl sulfides, enol ethers, silyl enol ethers, enamides and enecarbamates has been developed. The reactions are carried out at room temperature under air initiation in the presence of triethylborane acting as a chain transfer reagent and 4-tert-butylcatechol (TBC) as a source of hydrogen atom. The efficacy of the reaction is best explained by very favorable polar effects supporting the chain process and minimizing undesired polar reactions. The stereoselective hydroalkylation of chiral N-(alk-1-en-1-yl)oxazolidin-2-ones takes place with good to excellent diastereocontrol. Giese reaction not anymore limited to electron poor alkenes! A general method for the radical mediated hydroalkylation of electron rich alkenes including enol ethers, silylenolethers, enamides, and enecarbamates has been developed.![]()
Collapse
Affiliation(s)
- Qi Huang
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Sankar Rao Suravarapu
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Philippe Renaud
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
13
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
14
|
Liu M, Liu K, Xiong D, Zhang H, Li T, Li B, Qin X, Bai J, Ye X. Stereoselective Electro‐2‐deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 27 Shanda Nanlu Jinan Shandong 250100 China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
15
|
Su YL, Liu GX, Liu JW, Tram L, Qiu H, Doyle MP. Radical-Mediated Strategies for the Functionalization of Alkenes with Diazo Compounds. J Am Chem Soc 2020; 142:13846-13855. [DOI: 10.1021/jacs.0c05183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Wen Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Liu M, Liu KM, Xiong DC, Zhang H, Li T, Li B, Qin X, Bai J, Ye XS. Stereoselective Electro-2-deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020; 59:15204-15208. [PMID: 32394599 DOI: 10.1002/anie.202006115] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Abstract
We report a novel and highly stereoselective electro-2-deoxyglycosylation from glycals. This method features excellent stereoselectivity, scope, and functional-group tolerance. This process can also be applied to the modification of a wide range of natural products and drugs. Furthermore, a scalable synthesis of glycosylated podophyllotoxin and a one-pot trisaccharide synthesis through iterative electroglycosylations were achieved.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
17
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
18
|
Sheng J, Bian KJ, Su YM, Liao GX, Duan R, Li C, Liu Z, Wang XS. Visible light-mediated atom transfer radical addition to styrene: base controlled selective (phenylsulfonyl)difluoromethylation. Org Chem Front 2020. [DOI: 10.1039/c9qo01433k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-mediated (phenylsulfonyl)difluoromethylation of styrenes has been developed to afford both ATRA and heck-type products by simply tuning the bases.
Collapse
Affiliation(s)
- Jie Sheng
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- P. R. China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- Center for Excellence in Molecular Synthesis of CAS
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yi-Ming Su
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- Center for Excellence in Molecular Synthesis of CAS
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Guang-Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- Center for Excellence in Molecular Synthesis of CAS
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Ruomeng Duan
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- P. R. China
| | - Chen Li
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- P. R. China
| | - Zhihong Liu
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan
- P. R. China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- Center for Excellence in Molecular Synthesis of CAS
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
19
|
|
20
|
Lopp JM, Schmidt VA. Intermolecular Phosphite-Mediated Radical Desulfurative Alkene Alkylation Using Thiols. Org Lett 2019; 21:8031-8036. [PMID: 31552741 DOI: 10.1021/acs.orglett.9b03018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein the development of a S atom transfer process using triethyl phosphite as the S atom acceptor that allows thiols to serve as precursors of C-centered radicals. A range of functionalized and electronically unbiased alkenes including those containing common heteroatom-based functional groups readily participate in this reductive coupling. This process is driven by the exchange of relatively weak S-H and C-S bonds of aliphatic thiols for C-H, C-C, and S-P bonds of the products formed.
Collapse
Affiliation(s)
- John M Lopp
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Valerie A Schmidt
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
21
|
Zhang L, Si X, Yang Y, Witzel S, Sekine K, Rudolph M, Rominger F, Hashmi ASK. Reductive C–C Coupling by Desulfurizing Gold-Catalyzed Photoreactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01368] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lumin Zhang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xiaojia Si
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sina Witzel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kohei Sekine
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Das M, Vu MD, Zhang Q, Liu XW. Metal-free visible light photoredox enables generation of carbyne equivalents via phosphonium ylide C-H activation. Chem Sci 2019; 10:1687-1691. [PMID: 30842832 PMCID: PMC6368212 DOI: 10.1039/c8sc04195d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Carbyne, an interesting synthetic intermediate, has recently been generated from hypervalent iodine precursors via photoredox catalysis. Given the underexplored chemistry of carbyne, due to the paucity of carbyne sources, we are intrigued to discover a new source for this reactive species from classical reagents - phosphonium ylides. Our novel strategy employing phosphonium ylides in an olefin hydrocarbonation reaction features a facile approach for constructing carbon-carbon bonds through metal-free and benign reaction conditions. Moreover, the hydrocarbonation products were delivered in a highly regioselective manner.
Collapse
Affiliation(s)
- Mrinmoy Das
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Minh Duy Vu
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Qi Zhang
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| |
Collapse
|
23
|
Qin Q, Wang W, Zhang C, Song S, Jiao N. A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chem Commun (Camb) 2019; 55:10583-10586. [PMID: 31418430 DOI: 10.1039/c9cc05378f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intermolecular reductive C–C coupling of electrophilic alkyl radicals and alkenes has been developed.
Collapse
Affiliation(s)
- Qixue Qin
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Weijing Wang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
24
|
Li Q, Yin Y, Li Y, Zhang J, Huang M, Kim JK, Wu Y. A simple approach to indeno-coumarins via visible-light-induced cyclization of aryl alkynoates with diethyl bromomalonate. Org Chem Front 2019. [DOI: 10.1039/c9qo00795d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-induced triple-domino cyclization between aryl alkynoates and diethyl bromomalonate was developed for the synthesis of indeno-coumarins.
Collapse
Affiliation(s)
- Qingrui Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yunnian Yin
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yabo Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jianye Zhang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Mengmeng Huang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jung Keun Kim
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| |
Collapse
|
25
|
Lv XL, Wang C, Wang QL, Shu W. Rapid Synthesis of γ-Arylated Carbonyls Enabled by the Merge of Copper- and Photocatalytic Radical Relay Alkylarylation of Alkenes. Org Lett 2018; 21:56-59. [PMID: 30543433 DOI: 10.1021/acs.orglett.8b03485] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of mild and practical methods for the γ-arylation of carbonyl compounds is an ongoing challenge in organic synthesis. The first formal γ-arylation of carbonyl compounds via radical relay cross-coupling of α-bromocarbonyl precursors with boronic acids in the presence of alkenes is reported. This directing-group-free protocol allows for the rapid and straightforward access to a wide range of γ-arylated esters, ketones, and amides under ambient conditions with excellent functional group tolerance.
Collapse
Affiliation(s)
- Xu-Lu Lv
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 Shenzhen , China
| | - Cong Wang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 Shenzhen , China
| | - Qiao-Li Wang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 Shenzhen , China
| | - Wei Shu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 Shenzhen , China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , 300071 Tianjin , China
| |
Collapse
|
26
|
Miura T, Funakoshi Y, Nakahashi J, Moriyama D, Murakami M. Synthesis of Elongated Esters from Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Yuuta Funakoshi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| |
Collapse
|
27
|
|
28
|
Miura T, Funakoshi Y, Nakahashi J, Moriyama D, Murakami M. Synthesis of Elongated Esters from Alkenes. Angew Chem Int Ed Engl 2018; 57:15455-15459. [PMID: 30264919 DOI: 10.1002/anie.201809115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Indexed: 12/30/2022]
Abstract
A convenient method for synthesizing elongated aliphatic esters from alkenes is reported. An (alkoxycarbonyl)methyl radical species is generated upon visible-light irradiation of an ester-stabilized phosphorus ylide in the presence of a photoredox catalyst. This radical species adds onto the carbon-carbon double bond of an alkene to produce an elongated aliphatic ester.
Collapse
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Yuuta Funakoshi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
29
|
Povie G, Suravarapu SR, Bircher MP, Mojzes MM, Rieder S, Renaud P. Radical chain repair: The hydroalkylation of polysubstituted unactivated alkenes. SCIENCE ADVANCES 2018; 4:eaat6031. [PMID: 30035230 PMCID: PMC6054511 DOI: 10.1126/sciadv.aat6031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
The concept of repair is widely used by nature to heal molecules such as proteins, lipids, sugars, and DNA that are damaged by hydrogen atom abstraction resulting from oxidative stress. We show that this strategy, rather undocumented in the field of synthetic organic chemistry, can be used in a radical chain reaction to enable notoriously intractable transformations. By overcoming the radical chain inhibitor properties of substituted alkenes, the radical-mediated hydroalkylation of mono-, di-, tri-, and even tetrasubstituted unactivated olefins could be performed under mild conditions. With a remarkable functional group tolerance, this reaction provides a general coupling method for the derivatization of olefin-containing natural products.
Collapse
|
30
|
Li G, Cao YX, Luo CG, Su YM, Li Y, Lan Q, Wang XS. Copper-Catalyzed Decarboxylative Atom Transfer Radical Addition of Iododifluoroacetate to Alkynyl Carboxylic Acids. Org Lett 2016; 18:4806-4809. [DOI: 10.1021/acs.orglett.6b02216] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gang Li
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Cao
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chen-Guang Luo
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Su
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yan Li
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Quan Lan
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xi-Sheng Wang
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| |
Collapse
|
31
|
Lin QY, Xu XH, Zhang K, Qing FL. Visible-Light-Induced Hydrodifluoromethylation of Alkenes with a Bromodifluoromethylphosphonium Bromide. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509282] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing-Yu Lin
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Xiu-Hua Xu
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| | - Feng-Ling Qing
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
32
|
Lin QY, Xu XH, Zhang K, Qing FL. Visible-Light-Induced Hydrodifluoromethylation of Alkenes with a Bromodifluoromethylphosphonium Bromide. Angew Chem Int Ed Engl 2015; 55:1479-83. [DOI: 10.1002/anie.201509282] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/17/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Yu Lin
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Xiu-Hua Xu
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| | - Feng-Ling Qing
- KeyLaboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
33
|
Moustafa GAI, Suizu H, Aoyama H, Arai M, Akai S, Yoshimitsu T. Enantiospecific Synthesis and Cytotoxicity Evaluation of Ligudentatol: A Programmed Aromatization Approach to the 2,3,4-Trisubstituted Phenolic Motif via Visible-Light-Mediated Group Transfer Radical Cyclization. Chem Asian J 2014; 9:1506-10. [DOI: 10.1002/asia.201400110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 11/06/2022]
|
34
|
Ma G, Wan W, Li J, Hu Q, Jiang H, Zhu S, Wang J, Hao J. An efficient regioselective hydrodifluoromethylation of unactivated alkenes with TMSCF2CO2Et at ambient temperature. Chem Commun (Camb) 2014; 50:9749-52. [DOI: 10.1039/c4cc04591b] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient regioselective hydrodifluoromethylation of diverse unactivated vicinal alkenes is described. The primary mechanistic investigations indicate that a CF2COOEt radical species is involved.
Collapse
Affiliation(s)
- Guobin Ma
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Wen Wan
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Jialiang Li
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Qingyang Hu
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Haizhen Jiang
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Shizheng Zhu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai, China
| | - Jing Wang
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
| | - Jian Hao
- Department of Chemistry
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry
| |
Collapse
|