1
|
Thakur A, Verma M, Bharti R, Sharma R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
3
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
4
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
5
|
Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep 2020; 37:246-275. [DOI: 10.1039/c8np00093j] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review surveys the total syntheses of sulfur-containing natural products where sulfur atoms are introduced with different sulfurization agents to construct related sulfur-containing moieties.
Collapse
Affiliation(s)
- Nengzhong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Puli Saidhareddy
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
6
|
Oberheide A, Schwenk S, Ronco C, Semmrau LM, Görls H, Arndt HD. Synthesis, Structure, and Cytotoxicity of Urukthapelstatin A Polyazole Cyclopeptide Analogs. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ansgar Oberheide
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Sebastian Schwenk
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Cyril Ronco
- CNRS UMR7272; Université Côte d'Azur; Institut de Chimie de Nice 28, Avenue Valrose 06108 Nice France
| | - Lisa Maria Semmrau
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität; Humboldtstr. 8 07743 Jena Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| |
Collapse
|
7
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
8
|
Kaur R, Palta K, Kumar M, Bhargava M, Dahiya L. Therapeutic potential of oxazole scaffold: a patent review (2006–2017). Expert Opin Ther Pat 2018; 28:783-812. [DOI: 10.1080/13543776.2018.1526280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ramandeep Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kezia Palta
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Meha Bhargava
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Lalita Dahiya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Pei ZF, Yang MJ, Li L, Jian XH, Yin Y, Li D, Pan HX, Lu Y, Jiang W, Tang GL. Directed production of aurantizolicin and new members based on a YM-216391 biosynthetic system. Org Biomol Chem 2018; 16:9373-9376. [DOI: 10.1039/c8ob02665c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aurantizolicin and new compound 3 with improved bioactivity were generated highly effectively by heterologous expression of an engineered YM-216391 biosynthetic gene cluster.
Collapse
|
10
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
11
|
Schwenk S, Ronco C, Oberheide A, Arndt HD. Biomimetic Synthesis of Urukthapelstatin A by Aza-Wittig Ring Contraction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sebastian Schwenk
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Cyril Ronco
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Ansgar Oberheide
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| |
Collapse
|
12
|
Abstract
The first total synthesis of marthiapeptide A is reported. Two synthetic procedures are described: the first, which was unsuccessful, attempts to close the ring at position I, and the second, which was successful, closes the ring at position II. It appears that the first route was unsuccessful because it required cyclization next to the rigid thiazole moiety, whereas the second route closed next to the more flexible thiazoline ring.
Collapse
Affiliation(s)
- Yuqi Zhang
- School of Chemistry, The University of New South Wales , Gate 2 High Street, Sydney 2052, Australia
| | - Md Amirul Islam
- School of Chemistry, The University of New South Wales , Gate 2 High Street, Sydney 2052, Australia
| | - Shelli R McAlpine
- School of Chemistry, The University of New South Wales , Gate 2 High Street, Sydney 2052, Australia
| |
Collapse
|
13
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Hwang HJ, Ciufolini MA. A route to the heterocyclic cluster of the E-series of thiopeptide antibiotics. J Org Chem 2015; 80:4184-8. [PMID: 25836570 DOI: 10.1021/acs.joc.5b00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise route to the 3-hydroxypyridine core of thiopeptide antibiotics such as nocathiacin is described. Key phases of the sequence involve a modified Hantzsch pyridine construction and a chemoselective Peng deprotection of a phenolic MOM ether.
Collapse
Affiliation(s)
- Hee-Jong Hwang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marco A Ciufolini
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Islam MA, Zhang Y, Wang Y, McAlpine SR. Design, synthesis and anticancer mechanistic studies of linked azoles. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00387j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the synthesis and biological activity evaluation of 2,4 linked azole-containing molecules.
Collapse
Affiliation(s)
| | - Yuqi Zhang
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Yao Wang
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | | |
Collapse
|
16
|
Wang Y, Islam MA, Davis RA, McAlpine SR. The fungal natural product (1S,3S)-austrocortirubin induces DNA damage in HCT116 cells via a mechanism unique from other DNA damaging agents. Bioorg Med Chem Lett 2015; 25:249-53. [DOI: 10.1016/j.bmcl.2014.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 02/03/2023]
|