1
|
Zhang Q, Ali T, Lin Z, Peng X. Development of 4,4'-dibromobinaphthalene analogues with potent photo-inducible DNA cross-linking capability and cytotoxicity towards breast MDA-MB 468 cancer cells. Bioorg Chem 2023; 140:106769. [PMID: 37633128 DOI: 10.1016/j.bioorg.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States.
| |
Collapse
|
2
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
3
|
Zhang Q, Lin Z, Peng X. Photo-Reactivity of Binaphthalene Triphenylphosphonium Salts: DNA Interstrand Cross-Link Formation and Substituent Effects. Chem Res Toxicol 2022; 35:1334-1343. [PMID: 35857929 DOI: 10.1021/acs.chemrestox.1c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five novel 1,1'-binaphthalene analogues 1a-1e with triphenylphosphonium (TPP+) salts as a leaving group have been synthesized and characterized as photo-activatable DNA alkylating agents. Phototriggered release of the TPP+ group from 1a-1e generated naphthalenylmethyl-free radicals that were spontaneously transformed to the corresponding cations directly producing DNA interstrand cross-link (ICL) formation via alkylation. The substituents at position 4 not only affect the efficiency of ICL formation but also influence the reaction rate for DNA cross-linking. Groups with small or medium size favor ICL formation, while a bulky substituent (e.g., phenyl group) prevents DNA interstrand cross-linking. DNA alkylation by the naphthalenylmethyl cations photo-generated from 1a-1e occurs at dG, dC, and dA, while interstrand cross-linking took place with dG/dC base pairs. The TPP+ salts (1a-1e) are cations with both lipophilic and hydrophilic properties, which have great potential for biological applications.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin─Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
4
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Fan H, Sun H, Zhang Q, Peng X. Photoinduced DNA Interstrand Cross-Linking by 1,1'-Biphenyl Analogues: Substituents and Leaving Groups Combine to Determine the Efficiency of Cross-Linker. Chemistry 2021; 27:5215-5224. [PMID: 33440025 DOI: 10.1002/chem.202005064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Indexed: 11/11/2022]
Abstract
Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Huabing Sun
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| |
Collapse
|
6
|
Fan H, Peng X. Photoinduced DNA Interstrand Cross-Linking by Benzene Derivatives: Leaving Groups Determine the Efficiency of the Cross-Linker. J Org Chem 2021; 86:493-506. [PMID: 33253574 DOI: 10.1021/acs.joc.0c02234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have synthesized and characterized two small libraries of 2-OMe or 2-NO2-benzene analogues 2a-i and 3a-i containing a wide variety of leaving groups. Irradiation of these compounds at 350 nm generated benzyl radicals that were spontaneously oxidized to benzyl cations directly producing DNA interstrand cross-links (ICLs). Compounds with a 2-methoxy substituent showed a faster cross-linking reaction rate and higher ICL efficiency than the corresponding 2-nitro analogues. Apart from the aromatic substituent, the benzylic leaving groups greatly affected DNA cross-linking efficiency. Higher ICL yields were observed for compounds with OCH3 (3b), OCH2Ph (3d), or Ph3P+ (3i) as leaving groups than those containing OAc (3a), NMe2 (3e), morpholine (3f), OCH2CH═CH2 (3c), SPh (3g), or SePh (3h). The heat stability study of the isolated ICL products indicated that dGs were the preferred alkylation sites in DNA for the benzyl cations produced from 2a-i, 3c, and 3e-i while 3a (L = OAc), 3b (L = OMe), and 3d (L = OCH2Ph) showed a similar photoreactivity toward dGs and dAs. Although the photogenerated benzyl cations alkylated dG, dC, and dA, ICL assay with variation of DNA sequences showed that the ICL reaction occurred with opposing dG/dC but not with staggered dA/dA.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
7
|
A theoretical study towards understanding the origin of DNA oxidation products. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Robert G, Wagner JR. Tandem Lesions Arising from 5-(Uracilyl)methyl Peroxyl Radical Addition to Guanine: Product Analysis and Mechanistic Studies. Chem Res Toxicol 2019; 33:565-575. [PMID: 31820932 DOI: 10.1021/acs.chemrestox.9b00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of hydroxyl radical (HO•) with thymine in DNA generates 5-(uracilyl)-methyl radicals (T•) and the corresponding methylperoxyl radical (TOO•) in the presence of O2, which in turn propagates damage by reacting with a vicinal nucleobase. This leads to so-called double or tandem lesions. Because methyl oxidation products of thymine are major products, we investigated the reactivity of TOO• using a photolabile precursor: 5-(phenylthiomethyl)uracil (TSPh). The precursor was prepared and incorporated into a DNA trinucleotide: 5'-d(GpTSPhpA)-3' (G-TSPh-A). Upon photolysis, the resulting products were characterized by LC-MS/MS. Thereby, we identified four tandem lesions involving GpT, which include either 2,6-diamino-4-hydroxy-5-formamidopyrimidine (fapyG) or 8-oxo-7,8-dihydroguanine (oxoG) in tandem with either 5-formyluracil (fU) or 5-hydroxymethyluracil (hmU). The formation of these tandem lesions is explained by initial addition of TOO• to the C8 of guanine moiety, giving an N7-guanine cross-linked radical. The latter radical undergoes either reduction to an 7,8-saturated endoperoxide or oxidation to an 7,8-unsaturated endoperoxide, which transform into fapyG-fU-A and oxoG-fU-A, respectively. This is supported by the effect of a reducing (dithiothreitol) and oxidizing agent (Fe3+) on product formation. This study expands the repertoire of tandem lesions that can occur at GpT sequences and underlines the importance of redox environment.
Collapse
Affiliation(s)
- Gabriel Robert
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada
| | - J Richard Wagner
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada.,Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada
| |
Collapse
|
9
|
Lin Z, Fan H, Zhang Q, Peng X. Design, Synthesis, and Characterization of Binaphthalene Precursors as Photoactivated DNA Interstrand Cross-Linkers. J Org Chem 2018; 83:8815-8826. [PMID: 29929368 DOI: 10.1021/acs.joc.8b00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most recently, alkylation via photogenerated carbocations has been identified as a novel mechanism for photoinduced DNA interstrand cross-link (ICL) formation by bifunctional aryl compounds. However, most compounds showed a low efficiency for DNA cross-linking. Here, we have developed a series of new 1,1'-binaphthalene analogues that efficiently form DNA ICLs upon 350 nm irradiation via generated 2-naphthalenylmethyl cations. The DNA cross-linking efficiency depends on the substituents at position 4 of the naphthalene moiety as well as the leaving groups. Compounds with NO2, Ph, H, Br, or OMe substituents led to 2-4 times higher DNA ICL yields than those with a boronate ester group. Compounds with trimethylammonium salt as a leaving group showed slightly better cross-linking efficiency than those with bromo as a leaving group. Some of these compounds showed a better cross-linking efficiency than that of traditional alkylating agents, such as nitrogen mustard analogues or quinone methide precursors. These highly efficient photoactivated carbocation precursors allow determination and characterization of the adducts formed between the photogenerated naphthalenyl cations and four natural nucleosides, indicating that the alkylation sites for these naphthalene analogues are dG, dA, and dC.
Collapse
Affiliation(s)
- Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
10
|
Zheng L, Greenberg MM. Traceless Tandem Lesion Formation in DNA from a Nitrogen-Centered Purine Radical. J Am Chem Soc 2018; 140:6400-6407. [PMID: 29738242 DOI: 10.1021/jacs.8b02828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrogen-centered nucleoside radicals are commonly produced reactive intermediates in DNA exposed to γ-radiolysis and oxidants, but their reactivity is not well understood. Examination of the reactivity of independently generated 2'-deoxyadenosin- N6-yl radical (dA•) reveals that it is an initiator of tandem lesions, an important form of DNA damage that is a hallmark of γ-radiolysis. dA• yields O2-dependent tandem lesions by abstracting a hydrogen atom from the C5-methyl group of a 5'-adjacent thymidine to form 5-(2'-deoxyuridinyl)methyl radical (T•). The subsequently formed thymidine peroxyl radical adds to the 5'-adjacent dG, ultimately producing a 5'-OxodGuo-fdU tandem lesion. Importantly, the initial hydrogen abstraction repairs dA• to form dA. Thus, the involvement of dA• in tandem lesion formation is traceless by product analysis. The tandem lesion structure, as well as the proposed mechanism, are supported by LC-MS/MS, isotopic labeling, chemical reactivity experiments, and independent generation of T•. Tandem lesion formation efficiency is dependent on the ease of ionization of the 5'-flanking sequence, and the yields are >27% in the 5'-d(GGGT) flanking sequence. The traceless involvement of dA• in tandem lesion formation may be general for nitrogen-centered radicals in nucleic acids, and presents a new pathway for forming a deleterious form of DNA damage.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
11
|
Fan H, Sun H, Peng X. Substituents Have a Large Effect on Photochemical Generation of Benzyl Cations and DNA Cross-Linking. Chemistry 2018; 24:7671-7682. [DOI: 10.1002/chem.201705929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
- Milwaukee Institute for Drug Discovery; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| |
Collapse
|
12
|
Sun H, Taverna Porro ML, Greenberg MM. Independent Generation and Reactivity of Thymidine Radical Cations. J Org Chem 2017; 82:11072-11083. [PMID: 28994287 DOI: 10.1021/acs.joc.7b02017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide. Thymidine is the major product (33%) from 1 at pH 7.2. Diastereomeric mixtures of thymidine glycol and the corresponding 5-hydroxperoxides resulting from water trapping of 1 are formed. Significantly lower yields of products such as 5-formyl-2'-deoxyuridine that are ascribable to deprotonation from the C5-methyl group of 1 are observed. Independent generation of the N3-methyl analogue of 1 (NMe-1) produces considerably higher yields of products derived from water trapping, and these products are formed in much higher yields than those attributable to the C5-methyl group deprotonation in NMe-1. N3-Methyl-thymidine is, however, the major product and is produced in as high as 70% yield when the radical cation is produced in the presence of excess thiol. The effects of exogenous reagents on product distributions are consistent with the formation of diffusively free radical cations (1, NMe-1). This method should be compatible with producing radical cations at defined positions within DNA.
Collapse
Affiliation(s)
- Huabing Sun
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Marisa L Taverna Porro
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Wang Y, Lin Z, Fan H, Peng X. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation. Chemistry 2016; 22:10382-6. [DOI: 10.1002/chem.201601504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yibin Wang
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Zechao Lin
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| |
Collapse
|
14
|
Abstract
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
Collapse
Affiliation(s)
- Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| |
Collapse
|
15
|
Wang Y, Liu S, Lin Z, Fan Y, Wang Y, Peng X. Photochemical Generation of Benzyl Cations That Selectively Cross-Link Guanine and Cytosine in DNA. Org Lett 2016; 18:2544-7. [PMID: 27191599 PMCID: PMC5609456 DOI: 10.1021/acs.orglett.6b00755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV irradiation of several aryl boronates efficiently produced bifunctional benzyl cations that selectively form guanine-cytosine cross-links in DNA. Photoinduced homolysis of the C-Br bond took place with the aryl boronate bromides 3a and 4a, generating free radicals that were oxidized to benzyl cations via electron transfer. However, photoirradiation of the quaternary ammonium salts 3b and 4b led to heterolysis of C-N bond, directly producing benzyl cations. The electron-donating group in the aromatic ring greatly enhanced cross-linking efficiency.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Chemistry and Biochemistry and Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Shuo Liu
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Yukai Fan
- Department of Chemistry and Biochemistry and Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
16
|
Greenberg MM. Reactivity of Nucleic Acid Radicals. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016; 50:119-202. [PMID: 28529390 DOI: 10.1016/bs.apoc.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers' structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes.
Collapse
|
17
|
Rudra A, Hou D, Zhang Y, Coulter J, Zhou H, DeWeese TL, Greenberg MM. Bromopyridone Nucleotide Analogues, Anoxic Selective Radiosensitizing Agents That Are Incorporated in DNA by Polymerases. J Org Chem 2015; 80:10675-85. [PMID: 26509218 DOI: 10.1021/acs.joc.5b01833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ionizing radiation is frequently used to kill tumor cells. However, hypoxic solid tumor cells are more resistant to this treatment, providing the impetus to develop molecules that sensitize cells to ionizing radiation. 5-Bromo-2'-deoxyuridine (BrdU) has been investigated as a radiosensitizing agent in the lab and clinic for almost 5 decades. Recent reports that BrdU yields DNA interstrand cross-links (ICLs) in non-base-paired regions motivated us to develop radiosensitizing agents that generate cross-links in duplex DNA selectively under anoxic conditions. 4-Bromo- and 5-bromopyridone analogues of BrdU were synthesized and incorporated into oligonucleotides via solid-phase synthesis. Upon irradiation, these molecules yield DNA interstrand cross-links under anaerobic conditions. The respective nucleotide triphosphates are substrates for some DNA polymerases. ICLs are produced upon irradiation under anoxic conditions when the 4-bromopyridone is present in a PCR product. Because the nucleoside analogue is a poor phosphorylation substrate for human deoxycytidine kinase, a pro-nucleotide form of the 4-bromopyridone was used to incorporate this analogue into cellular DNA. Despite these efforts, the 4-bromopyridone nucleotide was not detected in cellular DNA. Although these molecules are improvements over previously reported nucleotide analogues designed to be hypoxic radiosensitizing agents, additional advances are needed to create molecules that function in cells.
Collapse
Affiliation(s)
- Arnab Rudra
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Dianjie Hou
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Jonathan Coulter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Haoming Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Han Y, Chen W, Kuang Y, Sun H, Wang Z, Peng X. UV-Induced DNA Interstrand Cross-Linking and Direct Strand Breaks from a New Type of Binitroimidazole Analogue. Chem Res Toxicol 2015; 28:919-26. [PMID: 25844639 DOI: 10.1021/tx500522r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four novel photoactivated binitroimidazole prodrugs were synthesized. These agents produced DNA interstrand cross-links (ICLs) and direct strand breaks (DSB) upon UV irradiation, whereas no or very few DNA ICLs and DSBs were observed without UV treatment. Although these four molecules (1-4) contain the same binitroimidazole moiety, they bear four different leaving groups, which resulted in their producing different yields of DNA damage. Compound 4, with nitrogen mustard as a leaving group, showed the highest ICL yield. Surprisingly, compounds 1-3, without any alkylating functional group, also induced DNA ICL formation, although they did so with lower yields, which suggested that the binitroimidazole moiety released from UV irradiation of 1-3 is capable of cross-linking DNA. The DNA cross-linked products induced by these compounds were completely destroyed upon 1.0 M piperidine treatment at 90 °C (leading to cleavage at dG sites), which revealed that DNA cross-linking mainly occurred via alkylation of dGs. We proposed a possible mechanism by which alkylating agents were released from these compounds. HRMS and NMR analysis confirmed that free nitrogen mustards were generated by UV irradiation of 4. Suppression of DNA ICL and DSB formation by a radical trap, TEMPO, indicated the involvement of free radicals in the photo reactions of 3 and 4 with DNA. On the basis of these data, we propose that UV irradiation of compounds 1-4 generated a binitroimidazole intermediate that cross-links DNA. The higher ICL yield observed with 4 resulted from the amine effector nitrogen mustard released from UV irradiation.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Wenbing Chen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Yunyan Kuang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Huabing Sun
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Zhiqiang Wang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
19
|
Sloane JL, Greenberg MM. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide. J Org Chem 2014; 79:9792-8. [PMID: 25295850 PMCID: PMC4201359 DOI: 10.1021/jo501982r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
RNA
oligonucleotides containing a phenyl selenide derivative of
5-methyluridine were chemically synthesized by solid-phase synthesis.
The phenyl selenide is rapidly converted to an electrophilic, allylic
phenyl seleneate under mild oxidative conditions. The phenyl seleneate
yields interstrand cross-links when part of a duplex and is useful
for synthesizing oligonucleotide conjugates. Formation of the latter
is illustrated by reaction of an oligonucleotide containing the phenyl
selenide with amino acids in the presence of mild oxidant. The products
formed are analogous to those observed in tRNA that are believed to
be formed posttranslationally via a biosynthetic intermediate that
is chemically homologous to the phenyl seleneate.
Collapse
Affiliation(s)
- Jack L Sloane
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
20
|
Hou D, Greenberg MM. DNA interstrand cross-linking upon irradiation of aryl halide C-nucleotides. J Org Chem 2014; 79:1877-84. [PMID: 24559326 DOI: 10.1021/jo4028227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
γ-Radiolysis kills cells by damaging DNA via radical processes. Many of the radical pathways are O2 dependent, which results in a reduction in the cytotoxicity of ionizing radiation in hypoxic tumor cells. Consequently, there is a need for chemical agents that increase DNA damage by ionizing radiation under O2-deficient conditions. Modified nucleotides that are incorporated in DNA and produce highly reactive σ-radicals are useful as radiosensitizing agents. Aryl halide C-nucleotides (4-6) were incorporated into oligonucleotides by solid-phase synthesis. Duplex DNA containing 4-6 forms interstrand cross-links upon γ-radiolysis under anaerobic conditions or UV irradiation. Deep Vent (exo(-)) DNA polymerase accepted the nucleotide triphosphate of C-nucleotide 6 as a substrate and preferentially incorporated it opposite pyrimidines, but no further extension was detected. Incorporation of 6 in extended products by Deep Vent (exo(-)) during PCR or by Sequenase during copying of single stranded DNA plasmid was undetectable. Aryl halide nucleotide analogues that produce DNA interstrand cross-links under anaerobic conditions upon irradiation are potentially useful as radiosensitizing agents, but further research is needed to identify molecules that are incorporated by DNA polymerases and do not block further polymerization for this approach to be useful in cells.
Collapse
Affiliation(s)
- Dianjie Hou
- Department of Chemistry Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|