1
|
Cheng X, Taylor AP, Zhu K. Synthesis of Substituted 2-Pyridones via 6π-Electrocyclization of Dienyl Isocyanates. J Org Chem 2022; 87:6403-6409. [PMID: 35476425 DOI: 10.1021/acs.joc.2c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot Curtius rearrangement of dienyl carboxylic acids followed by a 6π-electrocyclization process to form substituted 2-pyridone products has been developed. Dienyl isocyanates generated from aliphatic acids were more reactive than their aromatic counterparts. Additionally, substitution patterns of the carboxylic acids had an impact on the efficiency of the cyclization.
Collapse
Affiliation(s)
- Xiayun Cheng
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alexandria P Taylor
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kaicheng Zhu
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Zou N, Liu Z, Yan G, Wang Y, Liang C, Mo D. DBU‐Promoted 6π‐Azaelectrocyclization and Hydrogen‐Migration to Prepare 6‐Alkyl Pyridine
N
‐Oxides from
N
‐Vinyl‐
α
,
β
‐Unsaturated Nitrones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Zhang‐Wei Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Gong‐Gui Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ying‐Chun Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
3
|
Saha M, Das AR. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.:Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| |
Collapse
|
4
|
Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. Pseudopericyclic Dearomative 1,6-Cyclization of 1-(2-Pyridyl)-2-azabuta-1,3-dienes: Synthesis and Ring-Chain Valence Equilibria of 4H
-Pyrido[1,2-a
]pyrazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ilya P. Filippov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Mikhail S. Novikov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Nikolai V. Rostovskii
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| |
Collapse
|
5
|
Zhang J, Yan Y, Hu R, Li T, Bai W, Yang Y. Enantioselective Total Syntheses of Lyconadins A–E through a Palladium‐Catalyzed Heck‐Type Reaction. Angew Chem Int Ed Engl 2020; 59:2860-2866. [DOI: 10.1002/anie.201912948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayang Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Yangtian Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Rong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Wen‐Ju Bai
- Department of ChemistryStanford University Stanford CA 94305-5080 USA
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
6
|
Zhang J, Yan Y, Hu R, Li T, Bai W, Yang Y. Enantioselective Total Syntheses of Lyconadins A–E through a Palladium‐Catalyzed Heck‐Type Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiayang Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Yangtian Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Rong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Wen‐Ju Bai
- Department of ChemistryStanford University Stanford CA 94305-5080 USA
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
7
|
Vargas DF, Larghi EL, Kaufman TS. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat Prod Rep 2019; 36:354-401. [PMID: 30090891 DOI: 10.1039/c8np00014j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2006 to 2018 The application of the 6π-azaelectrocyclization of azatrienes as a key strategy for the synthesis of natural products, their analogs and related bioactive or biomedically-relevant compounds (from 2006 to date) is comprehensively reviewed. Details about reaction optimization studies, relevant reaction mechanisms and conditions are also discussed.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
8
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019; 58:5443-5446. [PMID: 30884052 DOI: 10.1002/anie.201901241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
9
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
10
|
Zhang XM, Tu YQ, Zhang FM, Chen ZH, Wang SH. Recent applications of the 1,2-carbon atom migration strategy in complex natural product total synthesis. Chem Soc Rev 2018; 46:2272-2305. [PMID: 28349159 DOI: 10.1039/c6cs00935b] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1,2-Carbon atom rearrangement has been broadly applied as a guiding strategy in complex molecule assembly. As it entails the carbon-carbon or carbon-heteroatom bond migration between two vicinal atoms, this type of reaction is capable of generating structural complexity through a molecular skeletal reorganization. This review will focus on recent employment of this strategy in the total synthesis of natural products, highlighting the exceptional utility of such synthetic methodologies in the construction of intricate carbocycles, heterocycles or structurally complex motifs from synthetically more accessible precursors.
Collapse
Affiliation(s)
- Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
DeForest JC, Samame RA, Suryn G, Burtea A, Rychnovsky SD. Second-Generation Synthesis of (+)-Fastigiatine Inspired by Conformational Studies. J Org Chem 2018; 83:8914-8925. [PMID: 29943989 DOI: 10.1021/acs.joc.8b01144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
(+)-Fastigiatine is a complex alkaloid isolated from the alpine club moss Lycopodium fastigatum, most commonly found in New Zealand. It has been the subject of two successful synthetic campaigns. A second-generation route toward fastigiatine was developed to resolve two problematic steps from our initial synthesis. Selective reduction and protection of the C13 ketone improved the yield and reliability of the dibromocarbene ring expansion step. In the prior synthesis, cuprate addition to the C10 enone generated a 1:1 mixture of isomers in an advanced intermediate. Protection of the C13 alcohol with a large silyl group changed the conformational preference of the enone and led to a more selective conjugate addition to produce the desired β-epimer at C10. MacMillan's decarboxylative photoredox addition method proved to be more practical than the prior aminomethyl cuprate addition chemistry. The second-generation synthesis is longer than the original but improves the selectivity and reproducibility of the overall route.
Collapse
Affiliation(s)
- Jacob C DeForest
- Department of Chemistry, 1102 Natural Sciences II , University of California-Irvine , Irvine , California 92697 , United States
| | - Renzo A Samame
- Department of Chemistry, 1102 Natural Sciences II , University of California-Irvine , Irvine , California 92697 , United States
| | - Gregory Suryn
- Department of Chemistry, 1102 Natural Sciences II , University of California-Irvine , Irvine , California 92697 , United States
| | - Alexander Burtea
- Department of Chemistry, 1102 Natural Sciences II , University of California-Irvine , Irvine , California 92697 , United States
| | - Scott D Rychnovsky
- Department of Chemistry, 1102 Natural Sciences II , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
12
|
Mondal P, Bhaumik A, Chatterjee S, Mukhopadhyay C. Fabrication of Ionic‐Liquid‐Embedded ZnO Nanoparticles: Application of a Synergistic Catalytic Effect to Thiol‐Induced 2‐Pyridone Synthesis. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Priya Mondal
- Department of ChemistryUniversity of Calcutta 92 APC Road Kolkata 700009 India
| | - Asim Bhaumik
- Departmentof Materials ScienceIndian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | - Sauvik Chatterjee
- Departmentof Materials ScienceIndian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | | |
Collapse
|
13
|
Ghosh AK, Sarkar A, Brindisi M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org Biomol Chem 2018; 16:2006-2027. [PMID: 29479624 PMCID: PMC5864567 DOI: 10.1039/c8ob00138c] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Curtius rearrangement is a versatile reaction in which a carboxylic acid can be converted to an isocyanate through an acyl azide intermediate under mild conditions. The resulting stable isocyanate can then be readily transformed into a variety of amines and amine derivatives including urethanes and ureas. There have been wide-ranging applications of the Curtius rearrangement in the synthesis of natural products and their derivatives. Also, this reaction has been extensively utilized in the synthesis and application of a variety of biomolecules. In this review, we present mechanistic studies, chemical methodologies and reagents for the synthesis of isocyanates from carboxylic acids, the conversion of isocyanates to amines and amine derivatives, and their applications in the synthesis of bioactive natural products and their congeners.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Anindya Sarkar
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
14
|
Erb W, Levanen G, Roisnel T, Dorcet V. Application of the Curtius rearrangement to the synthesis of 1′-aminoferrocene-1-carboxylic acid derivatives. NEW J CHEM 2018. [DOI: 10.1039/c7nj05020h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shortest synthesis of N-protected 1′-aminoferrocene-1-carboxylic acid from readily available ferrocene-1,1′-dicarboxylic acid is reported.
Collapse
Affiliation(s)
- William Erb
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Gael Levanen
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Thierry Roisnel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vincent Dorcet
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
15
|
Liu J, Krajangsri S, Singh T, De Seriis G, Chumnanvej N, Wu H, Andersson PG. Regioselective Iridium-Catalyzed Asymmetric Monohydrogenation of 1,4-Dienes. J Am Chem Soc 2017; 139:14470-14475. [DOI: 10.1021/jacs.7b06829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jianguo Liu
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Thishana Singh
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Giulia De Seriis
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Napasawan Chumnanvej
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Haibo Wu
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| | - Pher G. Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 10691, Stockholm, Sweden
| |
Collapse
|
16
|
Timmerman JC, Laulhé S, Widenhoefer RA. Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with 2-Pyridones. Org Lett 2017; 19:1466-1469. [DOI: 10.1021/acs.orglett.7b00450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacob C. Timmerman
- French Family Science Center, Duke University, Durham, North Carolina 27708, United States
| | - Sébastien Laulhé
- French Family Science Center, Duke University, Durham, North Carolina 27708, United States
| | - Ross A. Widenhoefer
- French Family Science Center, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Ishiuchi K, Jiang WP, Fujiwara Y, Wu JB, Kitanaka S. Serralongamines B-D, three new Lycopodium alkaloids from Lycopodium serratum var. longipetiolatum, and their inhibitory effects on foam cell formation in macrophages. Bioorg Med Chem Lett 2016; 26:2636-40. [PMID: 27086123 DOI: 10.1016/j.bmcl.2016.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 11/16/2022]
Abstract
Three new Lycopodium alkaloids, serralongamines B-D (1-3), have been isolated from the club moss Lycopodium serratum var. longipetiolatum, and the structures were elucidated on the basis of spectroscopic data and chemical transformation. 1 and 3 significantly exhibited the inhibitory activity against foam cell formation in human macrophages, one of characteristic features of early atherosclerotic lesions.
Collapse
Affiliation(s)
- Kan'ichiro Ishiuchi
- School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; Graduate School of Pharmaceutical Sciences, Nagoya-City University, 3-1, Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Wen-Ping Jiang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Kumamoto, Japan
| | - Jin-Bin Wu
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Susumu Kitanaka
- School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan.
| |
Collapse
|
18
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Ishida H, Kimura S, Kogure N, Kitajima M, Takayama H. The first asymmetric total synthesis of lycoposerramine-R. Org Biomol Chem 2015; 13:7762-71. [DOI: 10.1039/c5ob00827a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first asymmetric total synthesis of lycoposerramine-R was accomplished by a strategy featuring the stereoselective intramolecular aldol cyclization giving a cis-fused 5/6 bicyclic skeleton and a new method for the construction of the pyridone ring via the aza-Wittig reaction, thereby establishing the absolute configuration of the natural product.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Shinya Kimura
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Noriyuki Kogure
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| |
Collapse
|
20
|
Zhang LD, Zhou TT, Qi SX, Xi J, Yang XL, Yao ZJ. Total Syntheses of Lycoposerramine-V and 5-epi-Lycoposerramine-V. Chem Asian J 2014; 9:2740-4. [DOI: 10.1002/asia.201402614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 01/30/2023]
|
21
|
Abstract
Lyconadins A-C are important members of the Lycopodium alkaloid family with challenging structural features and interesting biological profile. Herein, various synthetic strategies and methods for their preparation are summarized with the focus on constructive bond formation and our efficient and divergent synthesis based on functional group pairing (FGP) strategy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Cooperative activation of cyclobutanones and olefins leads to bridged ring systems by a catalytic [4 + 2] coupling. Nat Chem 2014; 6:739-44. [PMID: 25054946 PMCID: PMC4150356 DOI: 10.1038/nchem.1989] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/28/2014] [Indexed: 01/31/2023]
Abstract
Bridged-ring systems are widely found in natural products and successful syntheses of them frequently feature intramolecular Diels-Alder (IMDA) reactions. These reactions are subclassified as either type I or type II IMDAs depending on how the diene motif is tethered to the rest of the substrate - type I are tethered at the 1-position of the diene and type II at the 2-position. While the type I IMDA has been used to great success, the molecular scaffolds accessible by type II IMDAs are limited by the strain inherent in the formation of a sp2-carbon at a bridgehead position. Here, we describe a complementary approach that provides access to these structures through the C−C activation of cyclobutanones and their coupling with olefins. Various alkenes have been coupled with cyclobutanones to provide a range of bridged skeletons. The ketone group of the products serves as a convenient handle for downstream functionalization.
Collapse
|
23
|
Yang Y, Haskins CW, Zhang W, Low PL, Dai M. Divergent total syntheses of lyconadins A and C. Angew Chem Int Ed Engl 2014; 53:3922-5. [PMID: 24596132 PMCID: PMC4113559 DOI: 10.1002/anie.201400416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/13/2022]
Abstract
Divergent and concise total syntheses of two lycopodium alkaloids, lyconadins A and C have been developed. The synthesis of lyconadin A, having potent neurotrophic activity, features an efficient one-pot ketal removal and formal aza-[4+2] cyclization to form the cagelike core structure. A tandem ketal removal/Mannich reaction was developed to build the tricyclic structure of lyconadin C. Both lyconadins A and C were synthesized from a pivotal intermediate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA), Homepage: http://www.chem.purdue.edu/dai/
| | - Christopher W. Haskins
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA), Homepage: http://www.chem.purdue.edu/dai/
| | - Wandi Zhang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA), Homepage: http://www.chem.purdue.edu/dai/
| | - Pui Leng Low
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA), Homepage: http://www.chem.purdue.edu/dai/
| | - Mingji Dai
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (USA), Homepage: http://www.chem.purdue.edu/dai/
| |
Collapse
|
24
|
Yang Y, Haskins CW, Zhang W, Low PL, Dai M. Divergent Total Syntheses of Lyconadins A and C. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Wu JB, Kitanaka S, Ishiuchi K, Jiang WP. Serralongamine A, a New Lycopodium Alkaloid from Lycopodium serratum var. longipetiolatum. HETEROCYCLES 2014. [DOI: 10.3987/com-13-12928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Vuk D, Marinić Ž, Molčanov K, Margetić D, Škorić I. Thermal electrocyclization reactions II: benzooctatetraenes and benzodecapentaenes. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
The Synthesis of Seven-Membered Rings in Natural Products. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|