1
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
2
|
Ślęczkowski ML, Mabesoone MFJ, Preuss MD, Post Y, Palmans ARA, Meijer EW. Helical bias in supramolecular polymers accounts for different stabilities of kinetically trapped states. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marcin L. Ślęczkowski
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Mathijs F. J. Mabesoone
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute of Microbiology Eidgenössische Technische Hochschule Zürich Zürich Switzerland
| | - Marco D. Preuss
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Yorick Post
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- School of Chemistry and the UNSW RNA Institute University of New South Wales Sydney Australia
| |
Collapse
|
3
|
Li LK, Leung SYL, Chu A, Yim KC, Cheung WL, Chan MY, Yam VWW. Synthesis of luminescent phosphine-containing rigid-rod dinuclear alkynylgold(I) complexes and their X-Ray structural, photophysical, self-assembly and electroluminescence studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Mabesoone MJ, Palmans ARA, Meijer EW. Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J Am Chem Soc 2020; 142:19781-19798. [PMID: 33174741 PMCID: PMC7705892 DOI: 10.1021/jacs.0c09293] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Interactions between solvents and solutes are a cornerstone of physical organic chemistry and have been the subject of investigations over the last century. In recent years, a renewed interest in fundamental aspects of solute-solvent interactions has been sparked in the field of supramolecular chemistry in general and that of supramolecular polymers in particular. Although solvent effects in supramolecular chemistry have been recognized for a long time, the unique opportunities that supramolecular polymers offer to gain insight into solute-solvent interactions have become clear relatively recently. The multiple interactions that hold the supramolecular polymeric structure together are similar in strength to those between solute and solvent. The cooperativity found in ordered supramolecular polymers leads to the possibility of amplifying these solute-solvent effects and will shed light on extremely subtle solvation phenomena. As a result, many exciting effects of solute-solvent interactions in modern physical organic chemistry can be studied using supramolecular polymers. Our aim is to put the recent progress into a historical context and provide avenues toward a more comprehensive understanding of solvents in multicomponent supramolecular systems.
Collapse
Affiliation(s)
- Mathijs
F. J. Mabesoone
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Bäumer N, Kartha KK, Palakkal JP, Fernández G. Morphology control in metallosupramolecular assemblies through solvent-induced steric demand. SOFT MATTER 2020; 16:6834-6840. [PMID: 32633744 DOI: 10.1039/d0sm00537a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the supramolecular self-assembly of π-conjugated systems into defined morphologies is a prerequisite for the preparation of functional materials. In recent years, the development of sophisticated sample preparation protocols and modulation of various experimental conditions (solvent, concentration, temperature, etc.) have enabled precise control over aggregation pathways of different types of monomer units. A common method to achieve pathway control consists in the combination of two miscible solvents in defined proportions - a "poor" and "good" solvent. However, the role of solvents of opposed polarity in the self-assembly of a given building block still remains an open question. Herein, we unravel the effect of aggregation-inducing solvent systems of opposed polarity (aqueous vs. non-polar media) on the supramolecular assembly of a new bolaamphiphilic Pt(ii) complex. A number of experimental methods show a comparable molecular packing in both media driven by a synergy of solvophobic, aromatic and weak hydrogen-bonding interactions. However, morphological analysis of the respective aggregates in aqueous and non-polar media reveals a restricted aggregate growth in aqueous media into spherical nanoparticles and a non-restricted 2D-nanosheet formation in non-polar media. These findings are attributed to a considerably more efficient solvation and, in turn, increased steric demand of the hydrophilic chains in aqueous media than in nonpolar media, which can be explained by the entrapment of water molecules in the hydrophilic aggregate shell via hydrogen bonds. Our findings reveal that the different solvation of peripheral solubilizing groups in solvents of opposed polarity is an efficient method for morphology control in self-assembly.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
6
|
Chakraborty S, Varghese S, Ghosh S. Supramolecular Nanowires from an Acceptor-Donor-Acceptor Conjugated Chromophore. Chemistry 2019; 25:16725-16731. [PMID: 31638289 DOI: 10.1002/chem.201904463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Oligothiophene derivatives have been extensively studied as p-type semiconducting materials in organic electronics applications. This work reports the synthesis, self-assembly and photophysical properties of acceptor-donor-acceptor (A-D-A)-type oligothiophene derivatives by end-group engineering of quaterthiophene (QT) with naphthalene monoimide (NMI) chromophores that are further connected to a trialkoxy benzamide wedge. Conjugation to the NMI units reduces the HOMO-LUMO gap significantly, and consequently the absorption spectrum exhibits a bathochromic shift of about 50 nm compared with QT. Furthermore, extended H-bonding interactions among the amido groups of the peripheral wedges produce entangled fibrillar nanostructures and gelation in hydrocarbon solvents such as methylcyclohexane, wherein the A-D-A chromophore exhibits typical H-aggregation. On the contrary, the fact that the same chromophore, lacking only the amido units, does not produce gels or H-aggregates indicates strong impact of H-bonding on the self-assembly. Computational studies revealed the electronic properties of the chromophore and predicted the geometry of a dimer in the H-aggregate that reasonably matches with the experimental results. Bulk electrical conductivity measurements determined an excellent conductivity of 2.3×10-2 S cm-1 for the H-aggregated system (OT-1), which is two orders of magnitude higher than that of the same chromophore lacking the amido groups (OT-2).
Collapse
Affiliation(s)
| | - Shinto Varghese
- Technical Research Center, Indian Association for the Cultivation of, Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, India.,Technical Research Center, Indian Association for the Cultivation of, Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
7
|
Rao KV, Mabesoone MFJ, Miyajima D, Nihonyanagi A, Meijer EW, Aida T. Distinct Pathways in “Thermally Bisignate Supramolecular Polymerization”: Spectroscopic and Computational Studies. J Am Chem Soc 2019; 142:598-605. [DOI: 10.1021/jacs.9b12044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kotagiri Venkata Rao
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Mathijs F. J. Mabesoone
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Daigo Miyajima
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsuko Nihonyanagi
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Lafleur RPM, Lou X, Pavan GM, Palmans ARA, Meijer EW. Consequences of a cosolvent on the structure and molecular dynamics of supramolecular polymers in water. Chem Sci 2018; 9:6199-6209. [PMID: 30090307 PMCID: PMC6062890 DOI: 10.1039/c8sc02257g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Polar cosolvents are commonly used to guide the self-assembly of amphiphiles in water. Here we investigate the influence of the cosolvent acetonitrile (ACN) on the structure and dynamics of a supramolecular polymer in water, which is based on the well-known benzene-1,3,5-tricarboxamide motif. Hydrogen/deuterium exchange mass spectroscopy measurements show that a gradual increase in the amount of ACN results in a gradual increase in the exchange dynamics of the monomers. In contrast, the morphology of the supramolecular polymers remains unchanged up to 15% of ACN, but then an abrupt change occurs and spherical aggregates are formed. Remarkably, this abrupt change coincides with the formation of micro-heterogeneity in the water-ACN mixtures. The results illustrate that in order to completely characterize supramolecular polymers it is important to add time-resolved measurements that probe their dynamic behavior, to the conventional techniques that are used to assess the morphology of the polymers. Subsequently we have used time-resolved measurements to investigate the influence of the concentration of ACN on the polymerization and depolymerization rates of the supramolecular polymers. Polymerization occurs within minutes when molecularly dissolved monomers are injected from ACN into water and is independent of the fraction of ACN up to 15%. In the depolymerization experiments-initiated by mixing equilibrated supramolecular polymers with dissolved monomers-the equilibration of the system takes multiple hours and does depend on the fraction of ACN. Interestingly, the longest equilibration time of the polymers is observed at a critical solvent composition of around 15% ACN. The differences in the timescales detected in the polymerization and depolymerization experiments are likely correlated to the non-covalent interactions involved, namely the hydrophobic effect and hydrogen-bonding interactions. We attribute the observed fast kinetics in the polymerization reactions to the hydrophobic effect, whereas the formation of intermolecular hydrogen bonds is the retarding factor in the equilibration of the polymers in the depolymerization experiments. Molecular dynamics simulations show that the latter is a likely explanation because ACN interferes with the hydrogen bonds and loosens the internal structure of the polymers. Our results highlight the importance of the solution conditions during the non-covalent synthesis of supramolecular polymers, as well as after equilibration of the polymers.
Collapse
Affiliation(s)
- René P M Lafleur
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , The Netherlands . ; Tel: +31 040 2473101
| | - Xianwen Lou
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , The Netherlands . ; Tel: +31 040 2473101
| | - Giovanni M Pavan
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , Galleria 2, Via Cantonale 2c, CH-6928 Manno , Switzerland
| | - Anja R A Palmans
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , The Netherlands . ; Tel: +31 040 2473101
| | - E W Meijer
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , The Netherlands . ; Tel: +31 040 2473101
| |
Collapse
|
9
|
Buendía J, García F, Yélamos B, Sánchez L. Transfer and amplification of chirality in Phe-based C3-symmetric non-ionic amphiphiles. Chem Commun (Camb) 2018; 52:8830-3. [PMID: 27345432 DOI: 10.1039/c6cc04273b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of amphiphiles and endowed with three l- or d-Phe units is reported. The chiral features provided by the Phe fragment are transferred to the supramolecular level to yield enantiomerically enriched helices. Additionally, we report herein the first example of amplification of chirality demonstrated by MR performed with supramolecular polymers showing very low degree of cooperativity.
Collapse
Affiliation(s)
- Julia Buendía
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Belén Yélamos
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Hifsudheen M, Mishra RK, Vedhanarayanan B, Praveen VK, Ajayaghosh A. The Helix to Super‐Helix Transition in the Self‐Assembly of π‐Systems: Superseding of Molecular Chirality at Hierarchical Level. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707392] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed Hifsudheen
- Photosciences and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus Thiruvananthapuram 695019 India
| | - Rakesh K. Mishra
- Photosciences and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus Thiruvananthapuram 695019 India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus Thiruvananthapuram 695019 India
| | - Ayyapanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus Thiruvananthapuram 695019 India
| |
Collapse
|
11
|
Hifsudheen M, Mishra RK, Vedhanarayanan B, Praveen VK, Ajayaghosh A. The Helix to Super-Helix Transition in the Self-Assembly of π-Systems: Superseding of Molecular Chirality at Hierarchical Level. Angew Chem Int Ed Engl 2017; 56:12634-12638. [PMID: 28799691 DOI: 10.1002/anie.201707392] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 01/16/2023]
Abstract
Higher-order super-helical structures derived from biological molecules are known to evolve through opposite coiling of the initial helical fibers, as seen in collagen protein. A similar phenomenon is observed in a π-system self-assembly of chiral oligo(phenyleneethylene) derivatives (S)-1 and (R)-1 that explains the unequal formation of both left- and right-handed helices from molecule having a specific chiral center. Concentration- and temperature-dependent circular dichroism (CD) and UV/Vis spectroscopic studies revealed that the initial formation of helical aggregates is in accordance with the molecular chirality. At the next level of hierarchical self-assembly, coiling of the fibers occurs with opposite handedness, thereby superseding the command of the molecular chirality. This was confirmed by solvent-dependent decoiling of super-helical structures and concentration-dependent morphological analysis.
Collapse
Affiliation(s)
- Mohamed Hifsudheen
- Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, India
| | - Rakesh K Mishra
- Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, India
| | - Vakayil K Praveen
- Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, India
| | - Ayyapanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, India
| |
Collapse
|
12
|
Aguiló E, Gavara R, Baucells C, Guitart M, Lima JC, Llorca J, Rodríguez L. Tuning supramolecular aurophilic structures: the effect of counterion, positive charge and solvent. Dalton Trans 2016; 45:7328-39. [DOI: 10.1039/c6dt00865h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of different cationic gold(i) complexes gave rise to the formation of unexpected supramolecular assemblies in water going from rod-like structures to vesicles and square-like structures.
Collapse
Affiliation(s)
- Elisabet Aguiló
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Raquel Gavara
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Clara Baucells
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Marta Guitart
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - João Carlos Lima
- LAQV-REQUIMTE
- Departamento de Química
- CQFB
- Universidade Nova de Lisboa
- Monte de Caparica
| | - Jordi Llorca
- Institut de Tècniques Energètiques i Centre de Recerca en NanoEnginyeria
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
13
|
Rest C, Kandanelli R, Fernández G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem Soc Rev 2015; 44:2543-72. [PMID: 25735967 DOI: 10.1039/c4cs00497c] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cooperative phenomena are common processes involved in the hierarchical self-assembly of multiple systems in nature, such as the tobacco mosaic virus and a cell's cytoskeleton. Motivated by the high degree of order exhibited by these systems, a great deal of effort has been devoted in the past two decades to design hierarchical supramolecular polymers by combining different classes of cooperative interactions. In this review, we have classified the field of supramolecular polymers depending on the cooperative non-covalent forces driving their formation, with particular emphasis on recent examples from literature. We believe that this overview would help scientists in the field to design novel self-assembled systems with improved complexity and functionalities.
Collapse
Affiliation(s)
- Christina Rest
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
14
|
Hong EYH, Wong HL, Yam VWW. From Spherical to Leaf-Like Morphologies: Tunable Supramolecular Assembly of Alkynylgold(I) Complexes through Variations of the Alkyl Chain Length. Chemistry 2015; 21:5732-5. [DOI: 10.1002/chem.201500078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/07/2022]
|