1
|
Wunderlich H, Alvaro RAC, Wenschuh H, Schnatbaum K. New method for peptide purification based on selective removal of truncation peptide impurities after SPPS with orthogonal capping. J Pept Sci 2023; 29:e3496. [PMID: 37060350 DOI: 10.1002/psc.3496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Peptide purification by high-performance liquid chromatography (HPLC) is associated with high solvent consumption, relatively large effort and lack of efficient parallelization. As an alternative, many catch-and-release (c&r) purification methods have been developed over the last decades to enable the efficient parallel purification of peptides originating from solid-phase peptide synthesis (SPPS). However, with one exception, none of the c&r systems has been widely established in industry and academia until today. Herein, we present an entirely new chromatography-free purification concept for peptides synthesized on a solid support, termed reactive capping purification (RCP). The RCP method relies on the capping of truncation peptides arising from incomplete coupling of amino acids during SPPS with a reactive tag. The reactive tag contains a masked functionality that, upon liberation during cleavage from the resin, enables straightforward purification of the peptide by incubation with a resin-bound reactive moiety. In this work, two different reactive tags based on masked thiols were developed. Capping with these reactive tags during SPPS led to effective modification of truncated sequences and subsequent removal of the latter by chemoselective reaction with a maleimide-functionalized solid support. By introducing a suitable protecting group strategy, the thiol-based RCP method described here could also be successfully applied to a thiol-containing peptide. Finally, the purification of a 15-meric peptide by the RCP method was demonstrated. The developed method has low solvent consumption, has the potential for efficient parallelization, uses readily available reagents, and is experimentally simple to perform.
Collapse
Affiliation(s)
- Hendrik Wunderlich
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | | | | | | |
Collapse
|
2
|
Zitterbart R, Berger N, Reimann O, Noble GT, Lüdtke S, Sarma D, Seitz O. Traceless parallel peptide purification by a first-in-class reductively cleavable linker system featuring a safety-release. Chem Sci 2021; 12:2389-2396. [PMID: 34164003 PMCID: PMC8179278 DOI: 10.1039/d0sc06285e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Hundreds of peptides can be synthesized by automated parallel synthesizers in a single run. In contrast, the most widely used peptide purification method - high-pressure liquid chromatography (HPLC) - only allows one-by-one processing of each sample. The chromatographic purification of many peptides, therefore, remains a time-consuming and costly effort. Catch-and-release methods can be processed in parallel and potentially provide a remedy. However, no such system has yet provided a true alternative to HPLC. Herein we present the development of a side-reaction free, reductively cleavable linker. The linker is added to the target peptide as the last building block during peptide synthesis. After acidic cleavage from synthetic resin, the linker-tagged full-length peptide is caught onto an aldehyde-modified solid support by rapid oxime ligation, allowing removal of all impurities lacking the linker by washing. Reducing the aryl azide to an aniline sensitizes the linker for cleavage. However, scission does not occur at non-acidic pH enabling wash out of reducing agent. Final acidic treatment safely liberates the peptide by an acid-catalysed 1,6-elimination. We showcase this first-in-class reductively cleavable linker system in the parallel purification of a personalized neoantigen cocktail, containing 20 peptides for cancer immunotherapy within six hours.
Collapse
Affiliation(s)
| | - Nadja Berger
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Oliver Reimann
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Gavin T Noble
- Bachem (UK) Ltd. Delph Court, Sullivans Way, St. Helens Merseyside WA9 5GL UK
| | - Stephan Lüdtke
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Dominik Sarma
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Oliver Seitz
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
3
|
Eriyagama DNAM, Shahsavari S, Halami B, Lu BY, Wei F, Fang S. Parallel, Large-Scale, and Long Synthetic Oligodeoxynucleotide Purification Using the Catching Full-Length Sequence by Polymerization Technique. Org Process Res Dev 2018; 22:1282-1288. [PMID: 30906183 PMCID: PMC6428204 DOI: 10.1021/acs.oprd.8b00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catching by polymerization synthetic oligodeoxynucleotide (ODN) purification technique was shown to be potentially suitable for high throughput purification by purifying 12 ODNs simultaneously, to be convenient for large-scale purification by purifying at 60 μmol synthesis scale, and to be highly powerful for long ODN purification by purifying ODNs as long as 303-mer. LC-MS analysis indicated that the ODNs purified with the technique have excellent purity.
Collapse
Affiliation(s)
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bhaskar Halami
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bao-Yuan Lu
- Nalco Champion, an Ecolab Company, 11177 S. Stadium
Drive, Sugar Land, TX 77478, USA
| | - Fengping Wei
- CGeneTech, Inc., 7202 E. 87th Street, Suite#100,
Indianapolis, IN 46256, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Kheirabadi M, Creech GS, Qiao JX, Nirschl DS, Leahy DK, Boy KM, Carter PH, Eastgate MD. Leveraging a "Catch-Release" Logic Gate Process for the Synthesis and Nonchromatographic Purification of Thioether- or Amine-Bridged Macrocyclic Peptides. J Org Chem 2018. [PMID: 29537839 DOI: 10.1021/acs.joc.7b03124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides containing N-alkylated amino acids have emerged as a promising therapeutic modality, capable of modulating protein-protein interactions and an intracellular delivery of hydrophilic payloads. While multichannel automated solid-phase peptide synthesis (SPPS) is a practical approach for peptide synthesis, the requirement for slow and inefficient chromatographic purification of the product peptides is a significant limitation to exploring these novel compounds. Herein, we invent a "catch-release" strategy for the nonchromatographic purification of macrocyclic peptides. A traceless catch process is enabled by the invention of a dual-functionalized N-terminal acetate analogue, which serves as a handle for capture onto a purification resin and as a leaving group for macrocyclization. Displacement by a C-terminal nucleophilic side chain thus releases the desired macrocycle from the purification resin. By design, this catch/release process is a logic test for the presence of the key components required for cyclization, thus removing impurities which lack the required functionality, such as common classes of peptide impurities, including hydrolysis fragments and truncated sequences. The method was shown to be highly effective with three libraries of macrocyclic peptides, containing macrocycles of 5-20 amino acids, with either thioether- or amine-based macrocyclic linkages; in this latter class, the reported method represents an enabling technology. In all cases, the catch-release protocol afforded significant enrichment of the target peptides purity, in many cases completely obviating the need for chromatography. Importantly, we have adapted this process for automation on a standard multichannel peptide synthesizer, achieving an efficient and completely integrated synthesis and purification platform for the preparation of these important molecules.
Collapse
Affiliation(s)
- Mahboubeh Kheirabadi
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Gardner S Creech
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Jennifer X Qiao
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - David S Nirschl
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - David K Leahy
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Kenneth M Boy
- Discovery Chemistry , Bristol-Myers Squibb , Wallingford , Connecticut 06492 , United States
| | - Percy H Carter
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - Martin D Eastgate
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| |
Collapse
|
5
|
Khanal A, Fang S. Solid Phase Stepwise Synthesis of Polyethylene Glycols. Chemistry 2017; 23:15133-15142. [PMID: 28834652 PMCID: PMC5658237 DOI: 10.1002/chem.201703004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/20/2023]
Abstract
Polyethylene glycol (PEG) and derivatives with eight and twelve ethylene glycol units were synthesized by stepwise addition of tetraethylene glycol monomers on a polystyrene solid support. The monomer contains a tosyl group at one end and a dimethoxytrityl group at the other. The Wang resin, which contains the 4-benzyloxy benzyl alcohol function, was used as the support. The synthetic cycle consists of deprotonation, Williamson ether formation (coupling), and detritylation. Cleavage of PEGs from solid support was achieved with trifluoroacetic acid. The synthesis including monomer synthesis was entirely chromatography-free. PEG products including those with different functionalities at the two termini were obtained in high yields. The products were analyzed with ESI and MALDI-TOF MS and were found close to monodispersity.
Collapse
Affiliation(s)
- Ashok Khanal
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
6
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 689] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
7
|
Ollivier N, Desmet R, Drobecq H, Blanpain A, Boll E, Leclercq B, Mougel A, Vicogne J, Melnyk O. A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins. Chem Sci 2017; 8:5362-5370. [PMID: 28970915 PMCID: PMC5609153 DOI: 10.1039/c7sc01912b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/27/2017] [Indexed: 11/21/2022] Open
Abstract
We show that the combination of solid phase and solution ligation techniques facilitates the production of a challenging and biologically active protein made of 180 amino acids.
Chemical protein synthesis gives access to well-defined native or modified proteins that are useful for studying protein structure and function. The majority of proteins synthesized up to now have been produced using native chemical ligation (NCL) in solution. Although there are significant advantages to assembling large peptides or proteins by solid phase ligation, reports of such approaches are rare. We report a novel solid phase method for protein synthesis which relies on the chemistry of the acetoacetyl group and ketoxime ligation for the attachment of the peptide to the solid support, and on a tandem transoximation/rearrangement process for the detachment of the target protein. Importantly, we show that the combination of solid phase and solution ligation techniques facilitates the production of a challenging and biologically active protein made of 180 amino acids. We show also that the solid phase method enables the purification of complex peptide segments through a chemoselective solid phase capture/release approach.
Collapse
Affiliation(s)
- N Ollivier
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - R Desmet
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - H Drobecq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - A Blanpain
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - E Boll
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - B Leclercq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - A Mougel
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - J Vicogne
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - O Melnyk
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| |
Collapse
|
8
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|