1
|
Synthesis and evaluation of inhibitors of Mycobacterium tuberculosis UGM using bioisosteric replacement. Bioorg Med Chem 2022; 69:116896. [DOI: 10.1016/j.bmc.2022.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
|
2
|
Bartolo ND, Demkiw KM, Read JA, Valentín EM, Yang Y, Dillon AM, Hu CT, Ward MD, Woerpel KA. Conformationally Biased Ketones React Diastereoselectively with Allylmagnesium Halides. J Org Chem 2022; 87:3042-3065. [PMID: 35167300 PMCID: PMC9022492 DOI: 10.1021/acs.joc.1c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of the highly reactive reagent allylmagnesium halide to α-substituted acyclic chiral ketones proceeded with high stereoselectivity. The stereoselectivity cannot be analyzed by conventional stereochemical models because these reactions do not conform to the requirements of those models. Instead, the stereoselectivity arises from the approach of the nucleophile to the most accessible diastereofaces of the lowest-energy conformations of the ketones. High stereoselectivity is expected, and the stereochemical outcome can be predicted, with conformationally biased ketones that have sterically distinguishable diastereofaces wherein only one face is accessible for nucleophilic addition. The conformations of the ketones can be determined by a combination of computational modeling and, in some cases, structure determination by X-ray crystallography.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Krystyna M. Demkiw
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | | | - Yingying Yang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Alexandra M. Dillon
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Chunhua T. Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Michael D. Ward
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
3
|
Fu J, Fu H, Xia Y, N'Go I, Cao J, Pan W, Vincent SP. Identification of inhibitors of UDP-galactopyranose mutase via combinatorial in situ screening. Org Biomol Chem 2021; 19:1818-1826. [PMID: 33565547 DOI: 10.1039/d1ob00138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An in situ screening assay for UDP-galactopyranose mutase (UGM, an essential enzyme of M. tuberculosis cell wall biosynthesis) has been developed to discover novel UGM inhibitors. The approach is based on the amide-forming reaction of an amino acid core with various cinnamic acids, followed by a direct fluorescence polarization assay to identify the best UGM binders without isolation and purification of the screened ligands. This assay allows us to perform one-pot high-throughput synthesis and screening of enzyme inhibitors in a 384-well plate format. UGM ligands were successfully identified by this technology and their inhibition levels were established from pure synthetic compounds in vitro and in a whole cell antibacterial assay. This study provides a blueprint for designing enamide structures as new UGM inhibitors and anti-mycobacterial agents.
Collapse
Affiliation(s)
- Jian Fu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China and Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium. and The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Huixiao Fu
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Yufen Xia
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Inès N'Go
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Jun Cao
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Stéphane P Vincent
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
4
|
Beaupre BA, Moran GR. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position. Front Mol Biosci 2020; 7:598912. [PMID: 33195440 PMCID: PMC7662398 DOI: 10.3389/fmolb.2020.598912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
For three decades the C4a-position of reduced flavins was the known site for covalency within flavoenzymes. The reactivity of this position of the reduced isoalloxazine ring with the dioxygen ground-state triplet established the C4a as a site capable of one-electron chemistry. Within the last two decades new types of reduced flavin reactivity have been documented. These studies reveal that the N5 position is also a protean site of reactivity, that is capable of nucleophilic attack to form covalent bonds with substrates. In addition, though the precise mechanism of dioxygen reactivity is yet to be definitively demonstrated, it is clear that the N5 position is directly involved in substrate oxygenation in some enzymes. In this review we document the lineage of discoveries that identified five unique modes of N5 reactivity that collectively illustrate the versatility of this position of the reduced isoalloxazine ring.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorg Med Chem 2020; 28:115579. [DOI: 10.1016/j.bmc.2020.115579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
|
6
|
Bartolo ND, Read JA, Valentín EM, Woerpel KA. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin-Anh and Chelation-Control Models. Chem Rev 2020; 120:1513-1619. [PMID: 31904936 PMCID: PMC7018623 DOI: 10.1021/acs.chemrev.9b00414] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review describes the additions of allylmagnesium reagents to carbonyl compounds and to imines, focusing on the differences in reactivity between allylmagnesium halides and other Grignard reagents. In many cases, allylmagnesium reagents either react with low stereoselectivity when other Grignard reagents react with high selectivity, or allylmagnesium reagents react with the opposite stereoselectivity. This review collects hundreds of examples, discusses the origins of stereoselectivities or the lack of stereoselectivity, and evaluates why selectivity may not occur and when it will likely occur.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, UT 84112, USA
| | - Elizabeth M. Valentín
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Susquehanna University, 514
University Avenue, Selinsgrove, PA 17870, USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| |
Collapse
|
7
|
Delbrouck JA, Bochatay VN, Tikad A, Vincent SP. Regioselective Synthesis of Difluorinated C-Furanosides Involving a Debenzylative Cycloetherification. Org Lett 2019; 21:5562-5566. [PMID: 31273996 DOI: 10.1021/acs.orglett.9b01878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly regioselective synthesis of valuable gem-difluorinated C-furanosides from unprotected aldoses via a debenzylative cycloetherification (DBCE) reaction induced by diethylaminosulfur trifluoride is descibed. The scope and limitations of this DBCE reaction are described using a series of commercially available pentoses and hexoses to afford, without selective protection/deprotection sequences, the corresponding gem-difluorinated C-furanosides in moderate to good yields.
Collapse
Affiliation(s)
- Julien A Delbrouck
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| | - Valentin N Bochatay
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences , Université Moulay Ismail , B.P. 11201, Zitoune , Meknès 50050 , Morocco
| | - Stéphane P Vincent
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| |
Collapse
|
8
|
da Fonseca LM, da Costa KM, Chaves VDS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Front Immunol 2019; 10:164. [PMID: 30787935 PMCID: PMC6372544 DOI: 10.3389/fimmu.2019.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria de Sousa Chaves
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Pesquisa em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Pei J, Chen A, Sun Q, Zhao L, Cao F, Tang F. Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase. mBio 2017; 8:mBio.01559-17. [PMID: 29162710 PMCID: PMC5698552 DOI: 10.1128/mbio.01559-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs.IMPORTANCE Nucleotide sugars are donors for the sugars in fungal wall polymers. We showed that production of the minor sugar rhamnose is used primarily to neutralize the toxic intermediate compound UDP-KDG. This surprising finding highlights a completely new role for minor sugars and other secondary metabolites with undetermined function. Furthermore, the toxic potential of predicted transition metabolites that never accumulate in cells under natural conditions are highlighted. We demonstrate that UDP-KDG inhibits the UDP-galactopyranose mutase enzyme, thereby affecting production of Galf, which is one of the components of cell wall glycans. Given the structural similarity, UDP-KDG likely inhibits additional nucleotide sugar-utilizing enzymes, a hypothesis that is also supported by our findings. Our results suggest that UDP-KDG could serve as a template to develop antifungal drugs.
Collapse
|
11
|
Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 2017; 56:3983-3992. [PMID: 28608671 PMCID: PMC5739916 DOI: 10.1021/acs.biochem.7b00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UDP-galactopyranose mutase (Glf or UGM) catalyzes the formation of uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme is required for the production of Galf-containing glycans. UGM is absent in mammals, but members of the Corynebacterineae suborder require UGM for cell envelope biosynthesis. The need for UGM in some pathogens has prompted the search for inhibitors that could serve as antibiotic leads. Optimizing inhibitor potency, however, has been challenging. The UGM from Klebsiella pneumoniae (KpUGM), which is not required for viability, is more effectively impeded by small-molecule inhibitors than are essential UGMs from species such as Mycobacterium tuberculosis or Corynebacterium diphtheriae. Why KpUGM is more susceptible to inhibition than other orthologs is not clear. One potential source of difference is UGM ortholog conformation. We previously determined a structure of CdUGM bound to a triazolothiadiazine inhibitor in the open form, but it was unclear whether the small-molecule inhibitor bound this form or to the closed form. By varying the terminal tag (CdUGM-His6 and GSG-CdUGM), we crystallized CdUGM to capture the enzyme in different conformations. These structures reveal a pocket in the active site that can be exploited to augment inhibitor affinity. Moreover, they suggest the inhibitor binds the open form of most prokaryotic UGMs but can bind the closed form of KpUGM. This model and the structures suggest strategies for optimizing inhibitor potency by exploiting UGM conformational flexibility.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valerie J. Winton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Bacteriology University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| |
Collapse
|
12
|
Villaume SA, Fu J, N'Go I, Liang H, Lou H, Kremer L, Pan W, Vincent SP. Natural and Synthetic Flavonoids as Potent
Mycobacterium tuberculosis
UGM Inhibitors. Chemistry 2017; 23:10423-10429. [DOI: 10.1002/chem.201701812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Sydney A. Villaume
- Department of ChemistryUniversity of Namur Rue de Bruxelles 61 5000 Namur Belgium
| | - Jian Fu
- Department of ChemistryUniversity of Namur Rue de Bruxelles 61 5000 Namur Belgium
| | - Inès N'Go
- Department of ChemistryUniversity of Namur Rue de Bruxelles 61 5000 Namur Belgium
| | - Hui Liang
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 P. R. China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 P. R. China
| | - Laurent Kremer
- IRIM (ex-CPBS)-UMR 9004Infectious Disease Research Institute of Montpellier (IDRIM)Université de Montpellier, CNRS 34293 Montpellier France
- INSERMIRIM 34293 Montpellier France
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University 3491 Baijin Road Guiyang 550014 P. R. China
| | - Stéphane P. Vincent
- Department of ChemistryUniversity of Namur Rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
13
|
Malik M, Jarosz S. Synthesis of polyhydroxylated decalins via two consecutive one-pot reactions: 1,4-addition/aldol reaction followed by RCM/ syn-dihydroxylation. Beilstein J Org Chem 2017; 12:2602-2608. [PMID: 28144329 PMCID: PMC5238570 DOI: 10.3762/bjoc.12.255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/11/2016] [Indexed: 11/23/2022] Open
Abstract
Synthesis of novel polyhydroxylated derivatives of decalin is described. The presented methodology consists in a one-pot copper-catalyzed 1,4-addition of vinylmagnesium bromide to sugar-derived cyclohexenone, followed by an aldol reaction with a derivative of but-3-enal. The obtained diene is then subjected to an assisted tandem catalytic sequence: ring-closing metathesis with the subsequent reuse of the Ru-catalyst in the syn-dihydroxylation. The stereochemical outcome of these reactions is discussed.
Collapse
Affiliation(s)
- Michał Malik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Fu J, Fu H, Dieu M, Halloum I, Kremer L, Xia Y, Pan W, Vincent SP. Identification of inhibitors targeting Mycobacterium tuberculosis cell wall biosynthesis via dynamic combinatorial chemistry. Chem Commun (Camb) 2017; 53:10632-10635. [DOI: 10.1039/c7cc05251k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we report a dynamic combinatorial approach along with highly efficient in situ screening to identify inhibitors of UDP-galactopyranose mutase (UGM), an essential enzyme involved in mycobacterial cell wall biosynthesis.
Collapse
Affiliation(s)
- Jian Fu
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| | - Huixiao Fu
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| | - Marc Dieu
- MaSUN
- Mass Spectrometry Facility
- University of Namur
- 5000 Namur
- Belgium
| | - Iman Halloum
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques
- CNRS UMR 5235
- Université de Montpellier
- France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques
- CNRS UMR 5235
- Université de Montpellier
- France
| | - Yufen Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants
- Guizhou Medical University
- Guiyang 550014
- China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants
- Guizhou Medical University
- Guiyang 550014
- China
| | - Stéphane P. Vincent
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- University of Namur (FUNDP)
- Namur B-5000
- Belgium
| |
Collapse
|
15
|
Shi Y, Colombo C, Kuttiyatveetil JRA, Zalatar N, van Straaten KE, Mohan S, Sanders DAR, Pinto BM. A Second, Druggable Binding Site in UDP-Galactopyranose Mutase from Mycobacterium tuberculosis? Chembiochem 2016; 17:2264-2273. [PMID: 27653508 DOI: 10.1002/cbic.201600469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/10/2022]
Abstract
UDP-galactopyranose mutase (UGM), a key enzyme in the biosynthesis of mycobacterial cell walls, is a potential target for the treatment of tuberculosis. In this work, we investigate binding models of a non-substrate-like inhibitor, MS-208, with M. tuberculosis UGM. Initial saturation transfer difference (STD) NMR experiments indicated a lack of direct competition between MS-208 and the enzyme substrate, and subsequent kinetic assays showed mixed inhibition. We thus hypothesized that MS-208 binds at an allosteric binding site (A-site) instead of the enzyme active site (S-site). A candidate A-site was identified in a subsequent computational study, and the overall hypothesis was supported by ensuing mutagenesis studies of the A-site. Further molecular dynamics studies led us to propose that MS-208 inhibition occurs by preventing complete closure of an active site mobile loop that is necessary for productive substrate binding. The results suggest the presence of an A-site with potential druggability, opening up new opportunities for the development of novel drug candidates against tuberculosis.
Collapse
Affiliation(s)
- Yun Shi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Cinzia Colombo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jijin R A Kuttiyatveetil
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Nataliya Zalatar
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Karin E van Straaten
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Sankar Mohan
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - B Mario Pinto
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
16
|
Frédéric CJM, Tikad A, Fu J, Pan W, Zheng RB, Koizumi A, Xue X, Lowary TL, Vincent SP. Synthesis of Unprecedented Sulfonylated Phosphono-exo-Glycals Designed as Inhibitors of the Three Mycobacterial Galactofuranose Processing Enzymes. Chemistry 2016; 22:15913-15920. [PMID: 27628709 DOI: 10.1002/chem.201603161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022]
Abstract
This study reports a new methodology to synthesize exo-glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo-glycals displaying two electron-withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo-glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)-galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46-(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.
Collapse
Affiliation(s)
- Christophe J-M Frédéric
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Abdellatif Tikad
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jian Fu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, 202, Sha-chong South Road, Guiyang, 550002, P. R. China
| | - Ruixiang B Zheng
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Akihiko Koizumi
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Stéphane P Vincent
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
17
|
Winton VJ, Aldrich C, Kiessling LL. Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. ACS Infect Dis 2016; 2:538-43. [PMID: 27626294 DOI: 10.1021/acsinfecdis.6b00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Uridine diphosphate galactopyranose mutase (UGM also known as Glf) is a biosynthetic enzyme required for construction of the galactan, an essential mycobacterial cell envelope polysaccharide. Our group previously identified two distinct classes of UGM inhibitors; each possesses a carboxylate moiety that is crucial for potency yet likely detrimental for cell permeability. To enhance the antimycobacterial potency, we sought to replace the carboxylate with a functional group mimic-an N-acylsulfonamide group. We therefore synthesized a series of N-acylsulfonamide analogs and tested their ability to inhibit UGM. For each inhibitor scaffold tested, the N-acylsulfonamide group functions as an effective carboxylate surrogate. Although the carboxylates and their surrogates show similar activity against UGM in a test tube, several N-acylsulfonamide derivatives more effectively block the growth of Mycobacterium smegmatis. These data suggest that the replacement of a carboxylate with an N-acylsulfonamide group could serve as a general strategy to augment antimycobacterial activity.
Collapse
Affiliation(s)
- Valerie J. Winton
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Claudia Aldrich
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| |
Collapse
|
18
|
Misra S, Valicherla GR, Mohd Shahab, Gupta J, Gayen JR, Misra-Bhattacharya S. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematodeBrugia malayi. Pathog Dis 2016; 74:ftw072. [DOI: 10.1093/femspd/ftw072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
|
19
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Liu C, Hou L, Meng A, Han G, Zhang W, Jiang S. Design, synthesis and bioactivity evaluation of Galf mimics as antitubercular agents. Carbohydr Res 2015; 429:135-42. [PMID: 26706033 DOI: 10.1016/j.carres.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022]
Abstract
A series of novel Galf mimics has been synthesized and characterized by IR, (1)H NMR, (13)C NMR, mass spectral and element analysis. All the newly prepared compounds were screened for their antitubercular activities. Bioactivity assays manifested that most of Galf mimics exhibited good antitubercular activities. Especially compound 4d and 4e displayed remarkable antitubercular efficacies, which were comparable to ethambutol.
Collapse
Affiliation(s)
- Chunyan Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan 063000, China.
| | - Linyu Hou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Aiguo Meng
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China
| | - Gang Han
- School of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Weiguo Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Mechanism-based candidate inhibitors of uridine diphosphate galactopyranose mutase (UGM). Carbohydr Res 2015; 419:1-7. [PMID: 26595659 DOI: 10.1016/j.carres.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023]
Abstract
Uridine diphosphate-galactopyranose mutase (UGM), an enzyme found in many eukaryotic and prokaryotic human pathogens, catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf), the latter being used as the biosynthetic precursor of the galactofuranose polymer portion of the mycobacterium cell wall. We report here the synthesis of a sulfonium and selenonium ion with an appended polyhydroxylated side chain. These compounds were designed as transition state mimics of the UGM-catalyzed reaction, where the head groups carrying a permanent positive charge were designed to mimic both the shape and positive charge of the proposed galactopyranosyl cation-like transition state. An HPLC-based UGM inhibition assay indicated that the compounds inhibited about 25% of UGM activity at 500 µM concentration.
Collapse
|
22
|
Kincaid VA, London N, Wangkanont K, Wesener DA, Marcus SA, Héroux A, Nedyalkova L, Talaat AM, Forest KT, Shoichet BK, Kiessling LL. Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of Antimycobacterial Agents. ACS Chem Biol 2015. [PMID: 26214585 DOI: 10.1021/acschembio.5b00370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Galactofuranose (Galf) is present in glycans critical for the virulence and viability of several pathogenic microbes, including Mycobacterium tuberculosis, yet the monosaccharide is absent from mammalian glycans. Uridine 5'-diphosphate-galactopyranose mutase (UGM) catalyzes the formation of UDP-Galf, which is required to produce Galf-containing glycoconjugates. Inhibitors of UGM have therefore been sought, both as antimicrobial leads and as tools to delineate the roles of Galf in cells. Obtaining cell permeable UGM probes by either design or high throughput screens has been difficult, as has elucidating how UGM binds small molecule, noncarbohydrate inhibitors. To address these issues, we employed structure-based virtual screening to uncover new inhibitor chemotypes, including a triazolothiadiazine series. These compounds are among the most potent antimycobacterial UGM inhibitors described. They also facilitated determination of a UGM-small molecule inhibitor structure, which can guide optimization. A comparison of results from the computational screen and a high-throughput fluorescence polarization (FP) screen indicated that the scaffold hits from the former had been evaluated in the FP screen but missed. By focusing on promising compounds, the virtual screen rescued false negatives, providing a blueprint for generating new UGM probes and therapeutic leads.
Collapse
Affiliation(s)
- Virginia A. Kincaid
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Nir London
- Department
of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, California 94158, United States
| | - Kittikhun Wangkanont
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Darryl A. Wesener
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sarah A. Marcus
- Department
of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Annie Héroux
- Photon
Sciences Directorate, Brookhaven National Laboratories, Upton, New York 11973, United States
| | - Lyudmila Nedyalkova
- Ontario Institute
of Cancer Research and Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Adel M. Talaat
- Department
of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Katrina T. Forest
- Department
of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, California 94158, United States
- Ontario Institute
of Cancer Research and Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Laura L. Kiessling
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Shi Y, Ardá A, Pinto BM. Combined molecular dynamics, STD-NMR, and CORCEMA protocol yields structural model for a UDP-galactopyranose mutase-inhibitor complex. Bioorg Med Chem Lett 2015; 25:1284-7. [PMID: 25681227 DOI: 10.1016/j.bmcl.2015.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
UDP-galactopyranose mutase (UGM) is an enzyme involved in the biosynthesis of the Mycobacterium tuberculosis cell wall, and is essential for the growth and survival of the organism. A micromolar inhibitor developed by tetrafluorination of the UGM substrate has been previously studied by saturation transfer difference (STD) NMR spectroscopy. To elucidate the bioactive conformation of the inhibitor bound to UGM, we employ molecular dynamics (MD) simulations to construct a structural model. The MD model is subsequently validated by a good fit between experimental and theoretical STD effects, the latter calculated by a complete relaxation and conformational exchange matrix (CORCEMA) analysis. This structural model is used to explain the relative binding affinities of the inhibitor and the parent substrate.
Collapse
Affiliation(s)
- Yun Shi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Ana Ardá
- Department of Chemistry, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - B Mario Pinto
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
24
|
van Straaten KE, Kuttiyatveetil JRA, Sevrain CM, Villaume SA, Jiménez-Barbero J, Linclau B, Vincent SP, Sanders DAR. Structural basis of ligand binding to UDP-galactopyranose mutase from Mycobacterium tuberculosis using substrate and tetrafluorinated substrate analogues. J Am Chem Soc 2015; 137:1230-44. [PMID: 25562380 DOI: 10.1021/ja511204p] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UDP-Galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) and plays a key role in the biosynthesis of the mycobacterial cell wall galactofuran. A soluble, active form of UGM from Mycobacterium tuberculosis (MtUGM) was obtained from a dual His6-MBP-tagged MtUGM construct. We present the first complex structures of MtUGM with bound substrate UDP-Galp (both oxidized flavin and reduced flavin). In addition, we have determined the complex structures of MtUGM with inhibitors (UDP and the dideoxy-tetrafluorinated analogues of both UDP-Galp (UDP-F4-Galp) and UDP-Galf (UDP-F4-Galf)), which represent the first complex structures of UGM with an analogue in the furanose form, as well as the first structures of dideoxy-tetrafluorinated sugar analogues bound to a protein. These structures provide detailed insight into ligand recognition by MtUGM and show an overall binding mode similar to those reported for other prokaryotic UGMs. The binding of the ligand induces conformational changes in the enzyme, allowing ligand binding and active-site closure. In addition, the complex structure of MtUGM with UDP-F4-Galf reveals the first detailed insight into how the furanose moiety binds to UGM. In particular, this study confirmed that the furanoside adopts a high-energy conformation ((4)E) within the catalytic pocket. Moreover, these investigations provide structural insights into the enhanced binding of the dideoxy-tetrafluorinated sugars compared to unmodified analogues. These results will help in the design of carbohydrate mimetics and drug development, and show the enormous possibilities for the use of polyfluorination in the design of carbohydrate mimetics.
Collapse
Affiliation(s)
- Karin E van Straaten
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon S7N 5C9, Canada
| | | | | | | | | | | | | | | |
Collapse
|