1
|
Lee S, Kwon H, Jee EK, Kim J, Lee KJ, Kim J, Ko N, Lee E, Lim HS. Synthesis and Structural Characterization of Macrocyclic α-ABpeptoids and Their DNA-Encoded Library. Org Lett 2024; 26:1100-1104. [PMID: 38295374 DOI: 10.1021/acs.orglett.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a cct amide sequence and cyclic tetramer has a saddle-like structure with an uncommon cccc amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.
Collapse
Affiliation(s)
- Soobin Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyunchul Kwon
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eun-Kyoung Jee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jaelim Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Nakeun Ko
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eunsung Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Camel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
2
|
Zhu J, Chen S, Liu Z, Guo J, Cao S, Long S. Recent advances in anticancer peptoids. Bioorg Chem 2023; 139:106686. [PMID: 37399616 DOI: 10.1016/j.bioorg.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Since most tumors become resistant to drugs in a gradual and irreversible manner, making treatment less effective over time, anticancer drugs require continuous development. Peptoids are a class of peptidomimetics that can be easily synthesized and optimized. They exhibit a number of unique characteristics, including protease resistance, non-immunogenicity, do not interfere with peptide functionality and skeleton polarity, and can adopt different conformations. They have been studied for their efficacy in different cancer therapies, and can be considered as a promising alternative molecular category for the development of anticancer drugs. Herein, we discuss the extensive recent advances in peptoids and peptoid hybrids in the treatment of cancers such as prostate, breast, lung, and other ones, in the hope of providing a reference for the further development of peptoid anticancer drugs.
Collapse
Affiliation(s)
- Jidan Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Wang HM, Seo CD, Lee KJ, Park JH, Lim HS. Evaluation of the cell permeability of bicyclic peptoids and bicyclic peptide-peptoid hybrids. Bioorg Chem 2022; 127:105976. [DOI: 10.1016/j.bioorg.2022.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
4
|
Eastwood JRB, Jiang L, Bonneau R, Kirshenbaum K, Renfrew PD. Evaluating the Conformations and Dynamics of Peptoid Macrocycles. J Phys Chem B 2022; 126:5161-5174. [PMID: 35820178 DOI: 10.1021/acs.jpcb.2c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptoid macrocycles are versatile and chemically diverse peptidomimetic oligomers. However, the conformations and dynamics of these macrocycles have not been evaluated comprehensively and require extensive further investigation. Recent studies indicate that two degrees of freedom, and four distinct conformations, adequately describe the behavior of each monomer backbone unit in most peptoid oligomers. On the basis of this insight, we conducted molecular dynamics simulations of model macrocycles using an exhaustive set of idealized possible starting conformations. Simulations of various sizes of peptoid macrocycles yielded a limited set of populated conformations. In addition to reproducing all relevant experimentally determined conformations, the simulations accurately predicted a cyclo-octamer conformation for which we now present the first experimental observation. Sets of three adjacent dihedral angles (ϕi, ψi, ωi+1) exhibited correlated crankshaft motions over the course of simulation for peptoid macrocycles of six residues and larger. These correlated motions may occur in the form of an inversion of one amide bond and the concerted rotation of the preceding ϕ and ψ angles to their mirror-image conformation, a variation on "crankshaft flip" motions studied in polymers and peptides. The energy landscape of these peptoid macrocycles can be described as a network of conformations interconnected by transformations of individual crankshaft flips. For macrocycles of up to eight residues, our mapping of the landscape is essentially complete.
Collapse
Affiliation(s)
- James R B Eastwood
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Linhai Jiang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Richard Bonneau
- Center for Data Science, New York University, New York, New York 10011, United States.,Center for Computational Biology, Flatiron Institute, New York, New York 10010 United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, New York, New York 10010 United States
| |
Collapse
|
5
|
Affiliation(s)
- Assunta D'Amato
- University of Salerno: Universita degli Studi di Salerno Chemistry and Biology "A. Zambelli" Via Giovanni Paolo II, 132 84084 Fisciano ITALY
| |
Collapse
|
6
|
Design and synthesis of a DNA-encoded combinatorial library of bicyclic peptoids. Bioorg Med Chem 2021; 48:116423. [PMID: 34583129 DOI: 10.1016/j.bmc.2021.116423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/24/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Here we describe the design and synthesis of a DNA-encoded library of bicyclic peptoids. We show that our solid-phase strategy is facile and DNA-compatible, yielding a structurally diverse combinatorial library of bicyclic peptoids of various ring sizes. We also demonstrate that affinity-based screening of a DNA-encoded library of bicyclic peptoids enables to efficiently identify high-affinity ligands for a target protein. Given their highly constraint structures, as well as increased cell permeability and proteolytic stability relative to native peptides, bicyclic peptoids could be an excellent source of protein capture agents. As such, our DNA-encoded library of bicyclic peptoids will serve as versatile tools that facilitate the generation of potent ligands against many challenging targets, such as intracellular protein-protein interactions.
Collapse
|
7
|
Herlan CN, Sonnefeld A, Gloge T, Brückel J, Schlee LC, Muhle-Goll C, Nieger M, Bräse S. Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids. Molecules 2021; 26:molecules26154548. [PMID: 34361700 PMCID: PMC8348019 DOI: 10.3390/molecules26154548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Anna Sonnefeld
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Thomas Gloge
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Julian Brückel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Luisa Chiara Schlee
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
8
|
D'Amato A, Schettini R, Pierri G, Izzo I, Grisi F, Tedesco C, De Riccardis F, Costabile C. Synthesis and characterization of new Na + complexes of N-benzyl cyclic peptoids and their role in the ring opening polymerization of l-lactide. NEW J CHEM 2021. [DOI: 10.1039/d0nj05931e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Na+ complexes of cyclic peptoid were employed for the first time as catalyst for the l-lactide polymerization.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Fabia Grisi
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| | - Chiara Costabile
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA)
- Italy
| |
Collapse
|
9
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
D'Amato A, Ghosh P, Costabile C, Della Sala G, Izzo I, Maayan G, De Riccardis F. Peptoid-based siderophore mimics as dinuclear Fe 3+ chelators. Dalton Trans 2020; 49:6020-6029. [PMID: 32319496 DOI: 10.1039/d0dt00689k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical synthesis of preorganized tripodal enterobactin/corynebactin-type ligands (consisting of a C3-symmetric macrocyclic peptoid core, three catecholamide coordinating units, and C2, C4, and C6 spacers) is reported. The formation of complexes with Fe3+ was investigated by spectrophotometric (UV-Vis) and spectrometric (ESI, negative ionization mode) methods and corroborated by theoretical (DFT) calculations. Preliminary studies revealed the intricate interplay between the conformational chirality of cyclic trimeric peptoids and metal coordination geometry of mononuclear species similar to that of natural catechol-based siderophores. Experimental results demonstrated the unexpected formation of unique dinuclear Fe3+ complexes.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”; University of Salerno; Via Giovani Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
12
|
Shin MH, Lee KJ, Lim HS. DNA-Encoded Combinatorial Library of Macrocyclic Peptoids. Bioconjug Chem 2019; 30:2931-2938. [DOI: 10.1021/acs.bioconjchem.9b00628] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Hyeon Shin
- Departments of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Departments of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Departments of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
13
|
Schettini R, D'Amato A, Pierri G, Tedesco C, Della Sala G, Motta O, Izzo I, De Riccardis F. From Cyclic Peptoids to Peraza-macrocycles: A General Reductive Approach. Org Lett 2019; 21:7365-7369. [PMID: 31469569 DOI: 10.1021/acs.orglett.9b02668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peraza-macrocycles form chelates of high thermodynamic and kinetic stability useful in diagnostic imaging (MRI, SPECT, PET), in coordination chemistry, and as catalysts. In this letter, we report an advantageous method to prepare these compounds via BH3-induced reduction of cyclic peptoids. Using this procedure, 10 homo- and heterosubstituted aza-coronands, with different sizes and side chains, have been synthesized from the corresponding cyclic oligoamides. Solid structures of free, protonated, and Na+ coordinated polyaza-derivatives have been disclosed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Oriana Motta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" , University of Salerno , via S. Allende, Baronissi , Salerno ( SA ), 84081 , Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , via Giovanni Paolo II, 132 , Fisciano ( SA ), 84084 , Italy
| |
Collapse
|
14
|
D'Amato A, Pierri G, Tedesco C, Della Sala G, Izzo I, Costabile C, De Riccardis F. Reverse Turn and Loop Secondary Structures in Stereodefined Cyclic Peptoid Scaffolds. J Org Chem 2019; 84:10911-10928. [PMID: 31339718 DOI: 10.1021/acs.joc.9b01509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Controlling the network of intramolecular interactions encoded by Nα-chiral side chains and the equilibria between cis- and trans-amide junctions in cyclic peptoid architectures constitutes a significant challenge for the construction of stable reverse turn and loop structures. In this contribution, we reveal, with the support of NMR spectroscopy, single-crystal X-ray crystallography and density functional theory calculations, the relevant noncovalent interactions stabilizing tri-, tetra-, hexa-, and octameric cyclic peptoids (as free hosts and host-guest complexes) with strategically positioned N-(S)-(1-phenylethyl)/N-benzyl side chains, and how these interactions influence the backbone topological order. With the help of theoretical models and spectroscopic/diffractometric studies, we disclose new γ-/β-turn and loop structures present in α-peptoid-based macrocycles and classify them according ϕ, ψ, and ω torsion angles. In our endeavor to characterize emergent secondary structures, we solved the solid-state structure of the largest metallated cyclic peptoid ever reported, characterized by an unprecedented alternated cis/trans amide bond linkage. Overall, our results indicate that molecules endowed with different elements of asymmetry (central and conformational) provide new architectural elements of facile atroposelective construction and broad conformational stability as the minimalist scaffold for novel stereodefined peptidomimetic foldamers and topologically biased libraries necessary for future application of peptoids in all fields of science.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Chiara Costabile
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| |
Collapse
|
15
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
16
|
Spencer RK, Butterfoss GL, Edison JR, Eastwood JR, Whitelam S, Kirshenbaum K, Zuckermann RN. Stereochemistry of polypeptoid chain configurations. Biopolymers 2019; 110:e23266. [DOI: 10.1002/bip.23266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ryan K. Spencer
- Department of Chemistry University of California Irvine California
- Department of Chemical Engineering & Materials Science University of California Irvine California
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - John R. Edison
- Martin A Fisher School of Physics Brandeis University Waltham Massachusetts
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California
| | | | - Stephen Whitelam
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California
| | | | | |
Collapse
|
17
|
Tezgel Ö, Noinville S, Bennevault V, Illy N, Guégan P. An alternative approach to create N-substituted cyclic dipeptides. Polym Chem 2019. [DOI: 10.1039/c8py01552j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Modified peptide backbones are promising peptidomimetics which offer several advantages in terms of improved biological activity and stability.
Collapse
Affiliation(s)
- Özgül Tezgel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | | | - Véronique Bennevault
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Nicolas Illy
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Philippe Guégan
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| |
Collapse
|
18
|
Brahm K, Wack JS, Eckes S, Engemann V, Schmitz K. Macrocyclization enhances affinity of chemokine‐binding peptoids. Biopolymers 2018; 110:e23244. [DOI: 10.1002/bip.23244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Kevin Brahm
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Julia S. Wack
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Stefanie Eckes
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Victoria Engemann
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Katja Schmitz
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| |
Collapse
|
19
|
Schettini R, Costabile C, Della Sala G, Iuliano V, Tedesco C, Izzo I, De Riccardis F. Cation-Induced Molecular Switching Based on Reversible Modulation of Peptoid Conformational States. J Org Chem 2018; 83:12648-12663. [DOI: 10.1021/acs.joc.8b01990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rosaria Schettini
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Veronica Iuliano
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| |
Collapse
|
20
|
Dumonteil G, Bhattacharjee N, Angelici G, Roy O, Faure S, Jouffret L, Jolibois F, Perrin L, Taillefumier C. Exploring the Conformation of Mixed Cis–Trans α,β-Oligopeptoids: A Joint Experimental and Computational Study. J Org Chem 2018; 83:6382-6396. [DOI: 10.1021/acs.joc.8b00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Geoffrey Dumonteil
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Nicholus Bhattacharjee
- Université de Toulouse-INSA-UPS, LPCNO, CNRS UMR 5215, 135 av Rangueil, F-31077, Toulouse, France
- Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INSA Lyon, ICBMS, CNRS UMR 5246, Equipe ITEMM, Bât Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Gaetano Angelici
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Olivier Roy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Laurent Jouffret
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Franck Jolibois
- Université de Toulouse-INSA-UPS, LPCNO, CNRS UMR 5215, 135 av Rangueil, F-31077, Toulouse, France
| | - Lionel Perrin
- Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INSA Lyon, ICBMS, CNRS UMR 5246, Equipe ITEMM, Bât Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claude Taillefumier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Abstract
Over the past two decades, developing medical applications for peptides has, and continues to be a highly active area of research. At present there are over 60 peptide-based drugs on the market and more than 140 in various stages of clinical trials. The interest in peptide-based therapeutics arises from their biocompatibility and their ability to form defined secondary and tertiary structures, resulting in a high selectivity for complex targets. However, there are significant challenges associated with the development of peptide-based therapeutics, namely peptides are readily metabolised in vivo. Peptoids are an emerging class of peptidomimetic and they offer an alternative to peptides. Peptoids are comprised of N-substituted glycines where side-chains are located on the nitrogen atom of the amide backbone rather than the α-carbon as is the case in peptides. This change in structure confers a high degree of resistance to proteolytic degradation but the absence of any backbone hydrogen bonding means that peptoids exhibit a high degree of conformational flexibility. Cyclisation has been explored as one possible route to rigidify peptoid structures, making them more selective, and, therefore more desirable as potential therapeutics. This review outlines the various strategies that have been developed over the last decade to access new types of macrocyclic peptoids.
Collapse
Affiliation(s)
| | - Steven L. Cobb
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
22
|
Shin MK, Hyun YJ, Lee JH, Lim HS. Comparison of Cell Permeability of Cyclic Peptoids and Linear Peptoids. ACS COMBINATORIAL SCIENCE 2018; 20:237-242. [PMID: 29481042 DOI: 10.1021/acscombsci.7b00194] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclic peptoids are emerging as an attractive class of peptidomimetics. Compared to their linear counterparts, cyclic peptoids should have increased conformational rigidity and preorganized structures, enabling them to bind more tightly to target proteins without major entropy penalty. Because cyclic peptoids lack the amide protons in their backbones like linear peptoids, it is perceived that cyclic peptoids are seemingly cell permeable as much as linear peptoids. However, no systematic investigation for cell permeability of cyclic peptoids has been reported yet. Here, we, for the first time, demonstrate that cyclic peptoids are far more cell permeable than linear counterparts irrespective of their size and side chains. This study highlights that cyclic peptoids, along with combinatorial library and high-throughput screening technologies, will serve as a rich source of protein binding molecules, particularly targeting intracellular proteins, given their excellent cell permeability in addition to their conformational rigidity and proteolytic stability.
Collapse
Affiliation(s)
- Min-Kyung Shin
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yu-Jung Hyun
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
23
|
Schettini R, Costabile C, Della Sala G, Buirey J, Tosolini M, Tecilla P, Vaccaro MC, Bruno I, De Riccardis F, Izzo I. Tuning the biomimetic performances of 4-hydroxyproline-containing cyclic peptoids. Org Biomol Chem 2018; 16:6708-6717. [DOI: 10.1039/c8ob01522h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five new cyclic peptoids containing (2S,4R)-4-hydroxyproline (Hyp) residues have been designed and synthesized using a mixed “submonomer/monomer” approach.
Collapse
Affiliation(s)
- R. Schettini
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - C. Costabile
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - G. Della Sala
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - J. Buirey
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - M. Tosolini
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- Trieste 34127
- Italy
| | - P. Tecilla
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- Trieste 34127
- Italy
| | - M. C. Vaccaro
- Department of Pharmacy
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - I. Bruno
- Department of Pharmacy
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - F. De Riccardis
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| | - I. Izzo
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano (SA) 84084
- Italy
| |
Collapse
|
24
|
Northrup JD, Mancini G, Purcell CR, Schafmeister CE. Development of Spiroligomer-Peptoid Hybrids. J Org Chem 2017; 82:13020-13033. [PMID: 29161507 DOI: 10.1021/acs.joc.7b01956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Creating functional macromolecules that possess the diversity and functionality of proteins poses an enormous challenge, as this requires large, preorganized macromolecules to facilitate interactions. Peptoids have been shown to interact with proteins, and combinatorial libraries of peptoids have been useful in discovering new ligands for protein binding. We have created spiroligomer-peptoid hybrids that have a spirocyclic core that preorganizes functional groups in three-dimensional space. By utilizing spiroligomers, we can reduce the number of rotatable bonds between functional groups while increasing the stereochemical diversity of the molecules. We have synthesized 15 new spiroligomer monomer amines that contain two stereocenters and three functional groups (67-84% yields from a common hydantoin starting material) as well as a spiroligomer trimer 25 with six stereocenters and five functional groups. These 16 amines were used to synthesize five first-generation spiroligomer-peptoids hybrids.
Collapse
Affiliation(s)
- Justin D Northrup
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Giulia Mancini
- Department of Chemistry, University of the Sciences , Philadelphia, Pennsylvania 19104, United States
| | - Claire R Purcell
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | |
Collapse
|
25
|
Roy O, Dumonteil G, Faure S, Jouffret L, Kriznik A, Taillefumier C. Homogeneous and Robust Polyproline Type I Helices from Peptoids with Nonaromatic α-Chiral Side Chains. J Am Chem Soc 2017; 139:13533-13540. [PMID: 28837348 DOI: 10.1021/jacs.7b07475] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptoids that are oligomers of N-substituted glycines represent a class of peptide mimics with great potential in areas ranging from medicinal chemistry to biomaterial science. Controlling the equilibria between the cis and trans conformations of their backbone amides is the major hurdle to overcome for the construction of discrete folded structures, particularly for the development of all-cis polyproline type I (PPI) helices, as tools for modulating biological functions. The prominent role of backbone to side chain electronic interactions (n → π*) and side chains bulkiness in promoting cis-amides was essentially investigated with peptoid aromatic side chains, among which the chiral 1-naphthylethyl (1npe) group yielded the best results. We have explored for the first time the possibility to achieve similar performances with a sterically hindered α-chiral aliphatic side chain. Herein, we report on the synthesis and detailed conformational analysis of a series of (S)-N-(1-tert-butylethyl)glycine (Ns1tbe) peptoid homo-oligomers. The X-ray crystal structure of an Ns1tbe pentamer revealed an all-cis PPI helix, and the CD curves of the Ns1tbe oligomers also resemble those of PPI peptide helices. Interestingly, the CD data reported here are the first for any conformationally homogeneous helical peptoids containing only α-chiral aliphatic side chains. Finally we also synthesized and analyzed two mixed oligomers composed of NtBu and Ns1tbe monomers. Strikingly, the solid state structure of the mixed oligomer Ac-(tBu)2-(s1tbe)4-(tBu)2-COOtBu, the longest to be solved for any linear peptoid, revealed a PPI helix of great regularity despite the presence of only 50% of chiral side chain in the sequence.
Collapse
Affiliation(s)
- Olivier Roy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand, France
| | - Geoffrey Dumonteil
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand, France
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand, France
| | - Laurent Jouffret
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand, France
| | - Alexandre Kriznik
- Université de Lorraine , Fédération de Recherche CNRS 3209, Service Commun de Biophysique Interactions Moléculaires, and Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, CNRS, UMR 7365, BP 20199, F-54505 Vandoeuvre les Nancy, France
| | - Claude Taillefumier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand, France
| |
Collapse
|
26
|
D'Amato A, Volpe R, Vaccaro MC, Terracciano S, Bruno I, Tosolini M, Tedesco C, Pierri G, Tecilla P, Costabile C, Della Sala G, Izzo I, De Riccardis F. Cyclic Peptoids as Mycotoxin Mimics: An Exploration of Their Structural and Biological Properties. J Org Chem 2017; 82:8848-8863. [PMID: 28763612 DOI: 10.1021/acs.joc.7b00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic peptoids have recently emerged as important examples of peptidomimetics for their interesting complexing properties and innate ability to permeate biological barriers. In the present contribution, experimental and theoretical data evidence the intricate conformational and stereochemical properties of five novel hexameric peptoids decorated with N-isopropyl, N-isobutyl, and N-benzyl substituents. Complexation studies by NMR, in the presence of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB), theoretical calculations, and single-crystal X-ray analyses indicate that the conformationally stable host/guest metal adducts display architectural ordering comparable to that of the enniatins and beauvericin mycotoxins. Similarly to the natural depsipeptides, the synthetic oligolactam analogues show a correlation between ion transport abilities in artificial liposomes and cytotoxic activity on human cancer cell lines. The reported results demonstrate that the versatile cyclic peptoid scaffold, for its remarkable conformational and complexing properties, can morphologically mimic related natural products and elicit powerful biological activities.
Collapse
Affiliation(s)
| | | | | | | | | | - Massimo Tosolini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via Giorgieri, 1, Trieste 34127, Italy
| | | | | | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via Giorgieri, 1, Trieste 34127, Italy
| | | | | | | | | |
Collapse
|
27
|
Ganesh SD, Saha N, Zandraa O, Zuckermann RN, Sáha P. Peptoids and polypeptoids: biomimetic and bioinspired materials for biomedical applications. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-016-1902-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
D'Amato A, Schettini R, Della Sala G, Costabile C, Tedesco C, Izzo I, De Riccardis F. Conformational isomerism in cyclic peptoids and its specification. Org Biomol Chem 2017; 15:9932-9942. [DOI: 10.1039/c7ob02643a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conformational chirality is an emerging and neglected property of rigid cyclic peptoids determining structural, catalytic, and biological properties. The present contribution analyzes its impact and sets the configurational rules to define it.
Collapse
Affiliation(s)
- A. D'Amato
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - R. Schettini
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - G. Della Sala
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - C. Costabile
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - C. Tedesco
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - I. Izzo
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| | - F. De Riccardis
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- Fisciano
- Italy
| |
Collapse
|
29
|
Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents. Oncotarget 2016; 6:40598-610. [PMID: 26515601 PMCID: PMC4747355 DOI: 10.18632/oncotarget.5839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.
Collapse
|
30
|
Lee KJ, Lee WS, Yun H, Hyun YJ, Seo CD, Lee CW, Lim HS. Oligomers of N-Substituted β(2)-Homoalanines: Peptoids with Backbone Chirality. Org Lett 2016; 18:3678-81. [PMID: 27404658 DOI: 10.1021/acs.orglett.6b01726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new class of peptoid-based peptidomimetics composed of oligomers of N-substituted β(2)-homoalanines is reported. Design, solid-phase synthesis, and preliminary circular dichroism studies of oligomers of N-alkylated β(2)-homoalanines consisting of up to 8-mers are described.
Collapse
Affiliation(s)
- Kang Ju Lee
- Departments of Chemistry and Advanced Material Science, Pohang University of Science and Technology (POSTECH) , Pohang 37673, South Korea
| | - Woo Sirl Lee
- Departments of Chemistry and Advanced Material Science, Pohang University of Science and Technology (POSTECH) , Pohang 37673, South Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University , Gwangju 61186, South Korea
| | - Yu-Jung Hyun
- Departments of Chemistry and Advanced Material Science, Pohang University of Science and Technology (POSTECH) , Pohang 37673, South Korea
| | - Chang Deok Seo
- Departments of Chemistry and Advanced Material Science, Pohang University of Science and Technology (POSTECH) , Pohang 37673, South Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University , Gwangju 61186, South Korea
| | - Hyun-Suk Lim
- Departments of Chemistry and Advanced Material Science, Pohang University of Science and Technology (POSTECH) , Pohang 37673, South Korea.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
31
|
Schettini R, De Riccardis F, Della Sala G, Izzo I. Enantioselective Alkylation of Amino Acid Derivatives Promoted by Cyclic Peptoids under Phase-Transfer Conditions. J Org Chem 2016; 81:2494-505. [PMID: 26914694 DOI: 10.1021/acs.joc.6b00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of substituents and cavity size on catalytic efficiency of proline-rich cyclopeptoids under phase-transfer conditions were studied. High affinity constants (Ka) for the sodium and potassium cations, comparable to those reported for crown ethers, were observed for an alternated N-benzylglycine/L-proline hexameric cyclopeptoid. This compound was found to catalyze the alkylation of N-(diphenylmethylene)glycine cumyl ester in values of enantioselectivities comparable with those reported for the Cinchona alkaloid ammonium salts derivatives (83-96% ee), and with lower catalyst loading (1-2.5% mol), in the presence of a broad range of benzyl, allyl and alkyl halides.
Collapse
Affiliation(s)
- Rosaria Schettini
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco De Riccardis
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Irene Izzo
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
32
|
De Santis E, Edwards AA, Alexander BD, Holder SJ, Biesse-Martin AS, Nielsen BV, Mistry D, Waters L, Siligardi G, Hussain R, Faure S, Taillefumier C. Selective complexation of divalent cations by a cyclic α,β-peptoid hexamer: a spectroscopic and computational study. Org Biomol Chem 2016; 14:11371-11380. [DOI: 10.1039/c6ob01954d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first report on metal binding ability of a cyclic α,β-peptoid hexamer towards a selection of metal cations is presented.
Collapse
Affiliation(s)
- E. De Santis
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| | - A. A. Edwards
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| | | | - S. J. Holder
- Functional Materials Group
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - A.-S. Biesse-Martin
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - B. V. Nielsen
- School of Science
- University of Greenwich
- Chatham Maritime
- UK
| | - D. Mistry
- Division of Pharmacy and Pharmaceutical Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - L. Waters
- Division of Pharmacy and Pharmaceutical Sciences
- University of Huddersfield
- Huddersfield
- UK
| | | | | | - S. Faure
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - C. Taillefumier
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| |
Collapse
|
33
|
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem Rev 2015; 116:1753-802. [DOI: 10.1021/acs.chemrev.5b00201] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niklas Gangloff
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Juliane Ulbricht
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Luxenhofer
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
34
|
Liao GP, Abdelraheem EMM, Neochoritis CG, Kurpiewska K, Kalinowska-Tłuścik J, McGowan DC, Dömling A. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Org Lett 2015; 17:4980-3. [PMID: 26439710 DOI: 10.1021/acs.orglett.5b02419] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.
Collapse
Affiliation(s)
- George P Liao
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Eman M M Abdelraheem
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Chemistry Department, Faculty of Science, Sohag University , Sohag 82524, Egypt
| | - Constantinos G Neochoritis
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University , 3 Ingardena Street, 30-060 Kraków, Poland
| | | | - David C McGowan
- Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Alexander Dömling
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
35
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
36
|
De Leon Rodriguez LM, Weidkamp AJ, Brimble MA. An update on new methods to synthesize cyclotetrapeptides. Org Biomol Chem 2015; 13:6906-21. [PMID: 26022908 DOI: 10.1039/c5ob00880h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclotetrapeptides are important bioactive lead drug molecules that display a wide spectrum of pharmacological activities. However, the synthesis of cyclotetrapeptides from their linear precursors is challenging due to the highly constrained conformation required for cyclisation, thus hampering their progress to a clinical setting. This review provides an account of the reported methods used for the synthesis of cyclotetrapeptides.
Collapse
Affiliation(s)
- Luis M De Leon Rodriguez
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
37
|
Gao Y, Kodadek T. Direct comparison of linear and macrocyclic compound libraries as a source of protein ligands. ACS COMBINATORIAL SCIENCE 2015; 17:190-5. [PMID: 25623285 PMCID: PMC4356041 DOI: 10.1021/co500161c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
There has been much discussion of
the potential desirability of
macrocyclic molecules for the development of tool compounds and drug
leads. But there is little experimental data comparing otherwise equivalent
macrocyclic and linear compound libraries as a source of protein ligands.
In this Letter, we probe this point in the context of peptoid libraries.
Bead-displayed libraries of macrocyclic and linear peptoids containing
four variable positions and 0–2 fixed residues, to vary the
ring size, were screened against streptavidin and the affinity of
every hit for the target was measured. The data show that macrocyclization
is advantageous, but only when the ring contains 17 atoms, not 20
or 23 atoms. This technology will be useful for conducting direct
comparisons between many different types of chemical libraries to
determine their relative utility as a source of protein ligands.
Collapse
Affiliation(s)
- Yu Gao
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
38
|
Wu H, She F, Gao W, Prince A, Li Y, Wei L, Mercer A, Wojtas L, Ma S, Cai J. The synthesis of head-to-tail cyclic sulfono-γ-AApeptides. Org Biomol Chem 2015; 13:672-6. [DOI: 10.1039/c4ob02232g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head-to-tail cyclic sulfono-γ-AApeptides.
Collapse
Affiliation(s)
- Haifan Wu
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Fengyu She
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Wenyang Gao
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Austin Prince
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Yaqiong Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Lulu Wei
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Allison Mercer
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Lukasz Wojtas
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Shengqian Ma
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Jianfeng Cai
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| |
Collapse
|