1
|
Tsukamoto T, Takahashi K, Murase N, Someya K, Sakata F, Yue T, Kusakabe T, Kato K. Synthesis of (-)-Monanchoradin A and (-)-Crambescin A2 392 Based on a Cyclization-Carbonylation-Cyclization Cascade. Org Lett 2024; 26:9011-9016. [PMID: 39400067 DOI: 10.1021/acs.orglett.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Syntheses of guanidino alkaloids (-)-monanchoradin A and (-)-crambescin A2 392 are described. The key feature of the syntheses is the cyclization-carbonylation-cyclization cascade of the optically active propargyl guanidine. The bicyclic guanidino cores bearing an asymmetric center and ester or carboxylic acid functionality were constructed in a single step. The carboxylic acid was then converted to (-)-monanchoradin A and (-)-crambescin A2 392.
Collapse
Affiliation(s)
- Takuya Tsukamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Natsuki Murase
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kyoka Someya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Fujino Sakata
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Tianci Yue
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Taichi Kusakabe
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
3
|
Chu L, Luo X, Zhu T, Cao Y, Zhang L, Deng Z, Gao J. Harnessing phosphonate antibiotics argolaphos biosynthesis enables a synthetic biology-based green synthesis of glyphosate. Nat Commun 2022; 13:1736. [PMID: 35365617 PMCID: PMC8976061 DOI: 10.1038/s41467-022-29188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glyphosate is a widely used herbicide with an annual production of more than one million tons globally. Current commercialized production processes of glyphosate are generally associated with manufacturing hazards and toxic wastes. Recently, many countries have strengthened environmental supervision and law enforcement on glyphosate manufacturing. Therefore, a green source of glyphosate is required. Here, we characterize the genes required for producing aminomethylphosphonate (AMP), one of the intermediates in the biosynthesis of the potent antibiotics argolaphos. We apply a synthetic biology strategy to improve AMP production in Streptomyces lividans, with fermentation titers of 52 mg L-1, a 500-fold improvement over the original strain. Furthermore, we develop an efficient and practical chemical process for converting AMP to glyphosate. Our findings highlight one greenness-driven alternative in the production of glyphosate.
Collapse
Affiliation(s)
- Leixia Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xiaoxia Luo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science & Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Taoting Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yingying Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lili Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
4
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
5
|
Gao Z, Li J, Song Y, Bi X, Meng X, Guo Y. Eight-step total synthesis of (+)-crambescin A. RSC Adv 2020; 10:39266-39270. [PMID: 35518432 PMCID: PMC9057376 DOI: 10.1039/d0ra08726b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
(+)-Crambescin A belongs to the polycyclic guanidine natural product family and has been shown to possess various medically important properties. The chiral bicyclic guanidine structure of (+)-crambescin A presents a challenge for chemical synthesis. Here we implement a novel asymmetric Biginelli reaction strategy to achieve the enantiospecific total synthesis of (+)-crambescin A in only 8 steps from the abundant and inexpensive aliphatic aldehyde, urea and methyl 3-oxobutanoate. Here we implement a novel asymmetric Biginelli reaction strategy to achieve enantiospecific total synthesis of (+)-crambescin A in only 8 steps from the abundant and inexpensive aliphatic aldehyde, urea and methyl 3-oxobutanoate.![]()
Collapse
Affiliation(s)
- Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Yunyang Song
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian Research Beijing 102205 P. R. China
| |
Collapse
|
6
|
Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci Rep 2020; 10:9764. [PMID: 32555282 PMCID: PMC7299949 DOI: 10.1038/s41598-020-66428-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
New bicyclic guanidine alkaloid, urupocidin C (Ur-C) along with the previously known urupocidin A (Ur-A) were isolated from the rare deep-sea marine sponge Monanchora pulchra, harvested in Northwestern Pacific waters. The unique structure of Ur-C was elucidated using 1D and 2D NMR spectroscopy as well as mass spectra. We discovered a promising selectivity of both alkaloids for human prostate cancer (PCa) cells, including highly drug-resistant lines, compared to non-malignant cells. In cancer cells, marine derived compounds were able to induce G1- and S-cell cycle arrest as well as caspase-mediated cell death. For the first time we have identified mitochondrial targeting as a central mechanism of anticancer action for these and similar molecules. Thus, treatment with the isolated alkaloids resulted in mitochondrial membrane permeabilization consequently leading to the release of cytotoxic mitochondrial proteins to cellular cytoplasm, ROS upregulation, consequent activation of caspase-9 and -3, followed by PARP cleavage, DNA fragmentation, and apoptosis. Moreover, synergistic effects were observed when Ur-A and Ur-C were combined with clinically approved PARP inhibitor olaparib. Finally, these alkaloids exhibited additive effects in combination with docetaxel and androgen receptor inhibitor enzalutamide, both applied in PCa therapy. In conclusion, urupocidin-like compounds are promising lead molecules for the development of new drugs for the treatment of advanced PCa.
Collapse
|
7
|
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol 2020; 176:113792. [PMID: 31926145 DOI: 10.1016/j.bcp.2020.113792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
Collapse
|
8
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
9
|
Romo AJ, Shiraishi T, Ikeuchi H, Lin GM, Geng Y, Lee YH, Liem PH, Ma T, Ogasawara Y, Shin-ya K, Nishiyama M, Kuzuyama T, Liu HW. The Amipurimycin and Miharamycin Biosynthetic Gene Clusters: Unraveling the Origins of 2-Aminopurinyl Peptidyl Nucleoside Antibiotics. J Am Chem Soc 2019; 141:14152-14159. [PMID: 31150226 PMCID: PMC6774755 DOI: 10.1021/jacs.9b03021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptidyl nucleoside antibiotics (PNAs) are a diverse class of natural products with promising biomedical activities. These compounds have tripartite structures composed of a core saccharide, a nucleobase, and one or more amino acids. In particular, amipurimycin and the miharamycins are novel 2-aminopurinyl PNAs with complex nine-carbon core saccharides and include the unusual amino acids (-)-cispentacin and N5-hydroxyarginine, respectively. Despite their interesting structures and properties, these PNAs have heretofore eluded biochemical scrutiny. Herein is reported the discovery and initial characterization of the miharamycin gene cluster in Streptomyces miharaensis (mhr) and the amipurimycin gene cluster (amc) in Streptomyces novoguineensis and Streptomyces sp. SN-C1. The gene clusters were identified using a comparative genomics approach, and heterologous expression of the amc cluster as well as gene interruption experiments in the mhr cluster support their role in the biosynthesis of amipurimycin and the miharamycins, respectively. The mhr and amc biosynthetic gene clusters characterized encode enzymes typical of polyketide biosynthesis instead of enzymes commonly associated with PNA biosynthesis, which, along with labeled precursor feeding studies, implies that the core saccharides found in the miharamycins and amipurimycin are partially assembled as polyketides rather than derived solely from carbohydrates. Furthermore, in vitro analysis of Mhr20 and Amc18 established their roles as ATP-grasp ligases involved in the attachment of the pendant amino acids found in these PNAs, and Mhr24 was found to be an unusual hydroxylase involved in the biosynthesis of N5-hydroxyarginine. Finally, analysis of the amc cluster and feeding studies also led to the proposal of a biosynthetic pathway for (-)-cispentacin.
Collapse
Affiliation(s)
- Anthony J. Romo
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideo Ikeuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Geng-Min Lin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Priscilla H. Liem
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tianlu Ma
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yasushi Ogasawara
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hung-wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Sesterterpenoid and Steroid Metabolites from a Deep-Water Alaska Sponge Inhibit Wnt/β-Catenin Signaling in Colon Cancer Cells. Mar Drugs 2018; 16:md16090297. [PMID: 30150508 PMCID: PMC6164309 DOI: 10.3390/md16090297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is known to play critical roles in a wide range of cellular processes: cell proliferation, differentiation, migration and embryonic development. Importantly, dysregulation of this pathway is tightly associated with pathogenesis in most human cancers. Therefore, the Wnt/β-catenin pathway has emerged as a promising target in anticancer drug screening programs. In the present study, we have isolated three previously unreported metabolites from an undescribed sponge, a species of Monanchora (Order Poecilosclerida, Family Crambidae), closely related to the northeastern Pacific species Monanchora pulchra, collected from deep waters off the Aleutian Islands of Alaska. Through an assortment of NMR, MS, ECD, computational chemical shifts calculation, and DP4, chemical structures of these metabolites have been characterized as spirocyclic ring-containing sesterterpenoid (1) and cholestane-type steroidal analogues (2 and 3). These compounds exhibited the inhibition of β-catenin response transcription (CRT) through the promotion of β-catenin degradation, which was in part implicated in the antiproliferative activity against two CRT-positive colon cancer cell lines.
Collapse
|
11
|
El-Demerdash A, Atanasov AG, Bishayee A, Abdel-Mogib M, Hooper JNA, Al-Mourabit A. Batzella, Crambe and Monanchora: Highly Prolific Marine Sponge Genera Yielding Compounds with Potential Applications for Cancer and Other Therapeutic Areas. Nutrients 2018; 10:E33. [PMID: 29301302 PMCID: PMC5793261 DOI: 10.3390/nu10010033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Pyrroloquinoline and guanidine-derived alkaloids present distinct groups of marine secondary metabolites with structural diversity that displayed potentialities in biological research. A considerable number of these molecular architectures had been recorded from marine sponges belonging to different marine genera, including Batzella, Crambe, Monanchora, Clathria, Ptilocaulis and New Caledonian starfishes Fromia monilis and Celerina heffernani. In this review, we aim to comprehensively cover the chemodiversity and the bioactivities landmarks centered around the chemical constituents exclusively isolated from these three marine genera including Batzella, Crambe and Monanchora over the period 1981-2017, paying a special attention to the polycyclic guanidinic compounds and their proposed biomimetic landmarks. It is concluded that these marine sponge genera represent a rich source of novel compounds with potential applications for cancer and other therapeutic areas.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Mamdouh Abdel-Mogib
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - John N A Hooper
- Queensland Museum, P.O. Box 3300, South Brisbane, QLD BC 4101, Australia.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| |
Collapse
|
12
|
Shubina LK, Makarieva TN, von Amsberg G, Denisenko VA, Popov RS, Dyshlovoy SA. Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra. Nat Prod Res 2017; 33:1415-1422. [DOI: 10.1080/14786419.2017.1419231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Larisa Kimovna Shubina
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Tatyana Nikolaevna Makarieva
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vladimir Anatolievich Denisenko
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Roman Sergeevich Popov
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Sergey Anatolievich Dyshlovoy
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- School of Natural Sciences, Far East Federal University, Vladivostok, Russian Federation
| |
Collapse
|
13
|
Liu J, Li XW, Guo YW. Recent Advances in the Isolation, Synthesis and Biological Activity of Marine Guanidine Alkaloids. Mar Drugs 2017; 15:E324. [PMID: 29064383 PMCID: PMC5666430 DOI: 10.3390/md15100324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Marine organisms are prolific resources of guanidine-containing natural products with intriguing structures and promising biological activities. These molecules have therefore attracted the attention of chemists and biologists for their further studies towards potential drug leads. This review focused on the guanidine alkaloids derived from marine sources and discussed the recent progress on their isolation, synthesis and biological activities, covering the literature from the year 2010 to the present.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
14
|
Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors. Mar Drugs 2017; 15:md15040087. [PMID: 28333079 PMCID: PMC5408233 DOI: 10.3390/md15040087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 12/26/2022] Open
Abstract
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology.
Collapse
|
15
|
Shubina LK, Makarieva TN, Denisenko VA, Dmitrenok PS, Dyshlovoy SA, von Amsberg G, Glazunov VP, Silchenko AS, Stonik IV, Lee HS, Lee YJ, Stonik VA. Absolute Configuration and Body Part Distribution of the Alkaloid 6- epi-Monanchorin from the Marine Polychaete Chaetopterus variopedatus. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a result of the first study on secondary metabolites from the cosmopolitan bioluminescent marine tube polychaete Chaetopterus variopedatus, a new bicyclic guanidine alkaloid, 6- epi-monanchorin (1), along with the previously known monanchorin (2) were isolated. The structure of 1 was elucidated by spectroscopic and chemical methods, including a cleavage of the C1–O7 bond to obtain a secondary alcohol (3), which was used to determine the absolute configurations by Mosher's method. It was found that 1 and 2 were mainly accumulated in a secreted mucus special organ of the worm (food net), where green and blue-green microalgae were detected. A biosynthetic pathway to 6- epi-monanchorin and monanchorin from dietary polyenic fatty acid precursors was proposed.
Collapse
Affiliation(s)
- Larisa K. Shubina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Tatyana N. Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Vladimir A. Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Sergey A. Dyshlovoy
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valery P. Glazunov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Artem S. Silchenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Inna V. Stonik
- A. V. Zhirmunsky Institute Marine Biology, Far-Eastern Branch of the Russian Academy of Sciences, Palchevskogo St. 17, Vladivostok 690041, Russia
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology, Marine Natural Products Chemistry Laboratory, Ansan 426-744, Republic of Korea
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science & Technology, Marine Natural Products Chemistry Laboratory, Ansan 426-744, Republic of Korea
| | - Valentin A. Stonik
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| |
Collapse
|
16
|
Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro. Mar Drugs 2016; 14:md14070133. [PMID: 27428983 PMCID: PMC4962023 DOI: 10.3390/md14070133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1–6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1–4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P+ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading.
Collapse
|
17
|
Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, Dyshlovoy SA, von Amsberg G, Krasokhin VB, Stonik VA. Melonoside A: An ω-Glycosylated Fatty Acid Amide from the Far Eastern Marine Sponge Melonanchora kobjakovae. Org Lett 2016; 18:3478-81. [DOI: 10.1021/acs.orglett.6b01678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Vladimir A. Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Aleksandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Sergey A. Dyshlovoy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gunhild von Amsberg
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Vladimir B. Krasokhin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| |
Collapse
|
18
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
20
|
Ríos-Guerra H, Jesús Nolasco Fidencio J, Inés Nicolás-Vázquez M, Ríos-Guerra H, Delgado F, González-Villanueva G, Guillermo Penieres-Carrillo J, Guevara Balcázar G. Exploring the Synthesis of Deceptively Simple Biginelli Products through N-CN Bond Cleavage. HETEROCYCLES 2016. [DOI: 10.3987/com-16-13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Ogurtsova EK, Makarieva TN, Korolkova YV, Andreev YA, Mosharova IV, Denisenko VA, Dmitrenok PS, Lee YJ, Grishin EV, Stonik VA. New Derivatives of Natural Acyclic Guanidine Alkaloids with TRPV Receptor-Regulating Properties. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The guanidine alkaloids, dihydropulchranin A (2), prepared from pulchranin A from the sponge Monanchora pulchra, and hexadecylguanidine (3), a synthetic analog of pulchranins, were studied for their TRPV channel-regulating activities. Compound 2 was active as an inhibitor of rTRPV1 and hTRPV3 receptors with EC50 values of 24.3 and 59.1 μM, respectively. Hexadecylguanidine (3) was not active against these receptors.
Collapse
Affiliation(s)
- Ekaterina K. Ogurtsova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Tatyana N. Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Yuliya V. Korolkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, GSP-7, Ul. Miklukho-Maklaya 16/10, Russia
| | - Yaroslav A. Andreev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, GSP-7, Ul. Miklukho-Maklaya 16/10, Russia
| | - Irina V. Mosharova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, GSP-7, Ul. Miklukho-Maklaya 16/10, Russia
| | - Vladimir A. Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science & Technology, Marine Natural Products Laboratory, Ansan 426-744, Republic of Korea
| | - Eugene V. Grishin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, GSP-7, Ul. Miklukho-Maklaya 16/10, Russia
| | - Valentin A. Stonik
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| |
Collapse
|
22
|
Kicha AA, Kalinovsky AI, Malyarenko TV, Ivanchina NV, Dmitrenok PS, Menchinskaya ES, Yurchenko EA, Pislyagin EA, Aminin DL, Huong TTT, Long PQ, Stonik VA. Cyclic Steroid Glycosides from the Starfish Echinaster luzonicus: Structures and Immunomodulatory Activities. JOURNAL OF NATURAL PRODUCTS 2015; 78:1397-1405. [PMID: 26068600 DOI: 10.1021/acs.jnatprod.5b00332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Five new steroid glycosides, luzonicosides B-E (2-5), belonging to a rare structure group of marine glycosides, containing carbohydrate moieties incorporated into a macrocycle, and a related open carbohydrate chain steroid glycoside, luzonicoside F (6), were isolated from the starfish Echinaster luzonicus along with the previously known cyclic steroid glycoside luzonicoside A (1). The structures of compounds 2-6 were established by extensive NMR and ESIMS techniques as well as chemical transformations. Luzonicoside A (1) at concentrations of 0.01-0.1 μM was shown to be potent in lysosomal activity stimulation, intracellular ROS level elevation, and NO synthesis up-regulation in RAW 264.7 murine macrophages. Luzonicoside D (4) was less active in these biotests.
Collapse
Affiliation(s)
- Alla A Kicha
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Anatoly I Kalinovsky
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Timofey V Malyarenko
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Natalia V Ivanchina
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Pavel S Dmitrenok
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Ekaterina S Menchinskaya
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Ekaterina A Yurchenko
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Evgeny A Pislyagin
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Dmitry L Aminin
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| | - Trinh T T Huong
- ‡Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
| | - Pham Quoc Long
- ‡Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam
| | - Valentin A Stonik
- †G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
23
|
Shubina LK, Makarieva TN, Yashunsky DV, Nifantiev NE, Denisenko VA, Dmitrenok PS, Dyshlovoy SA, Fedorov SN, Krasokhin VB, Jeong SH, Han J, Stonik VA. Pyridine Nucleosides Neopetrosides A and B from a Marine Neopetrosia sp. Sponge. Synthesis of Neopetroside A and Its β-Riboside Analogue. JOURNAL OF NATURAL PRODUCTS 2015; 78:1383-1389. [PMID: 26035733 DOI: 10.1021/acs.jnatprod.5b00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neopetrosides A (1) and B (2), new naturally occurring ribosides of nicotinic acid with extremely rare α-N-glycoside linkages and residues of p-hydroxybenzoic and pyrrole-2-carboxylic acids attached to C-5', were isolated from a marine Neopetrosia sp. sponge. Structures 1 and 2 were determined by NMR and MS methods and confirmed by the synthesis of 1 and its β-riboside analogue (3). Neopetroside A (1) upregulates mitochondrial functions in cardiomyocytes.
Collapse
Affiliation(s)
- Larisa K Shubina
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Dmitry V Yashunsky
- ‡N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russian Federation
| | - Nikolay E Nifantiev
- ‡N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russian Federation
| | - Vladimir A Denisenko
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Pavel S Dmitrenok
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Sergey A Dyshlovoy
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Sergey N Fedorov
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Vladimir B Krasokhin
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | - Seung Hun Jeong
- §National Research Laboratory Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center (CMDC), Department of Physiology, College of Medicine, Inje University, Busan 614-735, South Korea
| | - Jin Han
- §National Research Laboratory Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center (CMDC), Department of Physiology, College of Medicine, Inje University, Busan 614-735, South Korea
| | - Valentin A Stonik
- †G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russian Federation
| |
Collapse
|
24
|
Tabakmakher KM, Makarieva TN, Denisenko VA, Guzii AG, Dmitrenok PS, Kuzmich AS, Stonik VA. Normonanchocidins A, B and D, New Pentacyclic Guanidine Alkaloids from the Far-Eastern Marine Sponge Monanchora pulchra. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
New pentacyclic guanidine alkaloids, normonanchocidins A, B and D (1–3) along with the earlier known monanchocidin A were isolated from the Far-Eastern marine sponge Monanchora pulchra. Structures of 1–3 were elucidated using 1D- and 2D-NMR spectroscopic and mass spectrometric data. Compound 1 and a mixture of 2 and 3 (1:1) exhibited cytotoxic activities against human leukemia THP-1 cells with IC50 values of 2.1 μM and 3.7 μM, respectively, and against cervix epithelial carcinoma HeLa cells with IC50 of 3.8 μM and 6.8 μM, respectively.
Collapse
Affiliation(s)
- Ksenya M. Tabakmakher
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Tatyana N. Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Vladimir A. Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Alla G. Guzii
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Aleksandra S. Kuzmich
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Valentin A. Stonik
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| |
Collapse
|
25
|
Santos MFC, Harper PM, Williams DE, Mesquita JT, Pinto ÉG, da Costa-Silva TA, Hajdu E, Ferreira AG, Santos RA, Murphy PJ, Andersen RJ, Tempone AG, Berlinck RGS. Anti-parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge Monanchora arbuscula. JOURNAL OF NATURAL PRODUCTS 2015; 78:1101-1112. [PMID: 25924111 DOI: 10.1021/acs.jnatprod.5b00070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HPLC-UV-ELSD-MS-guided fractionation of the anti-parasitic extract obtained from the marine sponge Monanchora arbuscula, collected off the southeastern coast of Brazil, led to the isolation of a series of guanidine and pyrimidine alkaloids. The pyrimidines monalidine A (1) and arbusculidine A (7), as well as the guanidine alkaloids batzellamide A (8) and hemibatzelladines 9-11, represent new minor constituents that were identified by analysis of spectroscopic data. The total synthesis of monalidine A confirmed its structure. Arbusculidine A (7), related to the ptilocaulin/mirabilin/netamine family of tricyclic guanidine alkaloids, is the first in this family to possess a benzene ring. Batzellamide A (8) and hemibatzelladines 9-11 represent new carbon skeletons that are related to the batzelladines. Evaluation of the anti-parasitic activity of the major known metabolites, batzelladines D (12), F (13), L (14), and nor-L (15), as well as of synthetic monalidine A (1), against Trypanosoma cruzi and Leishmania infantum is also reported, along with a detailed investigation of parasite cell-death pathways promoted by batzelladine L (14) and norbatzelladine L (15).
Collapse
Affiliation(s)
- Mario F C Santos
- †Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Philip M Harper
- ‡School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
| | | | - Juliana T Mesquita
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
| | - Érika G Pinto
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
- ∥Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, CEP 05403-000 São Paulo, SP, Brazil
| | - Thais A da Costa-Silva
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
| | - Eduardo Hajdu
- #Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040 Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- ∇Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Raquel A Santos
- ⊗Laboratório de Genética e Biologia Molecular, Programa de Pós-Graduação em Ciências, Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201, CEP 14404 600 Franca, SP, Brazil
| | - Patrick J Murphy
- ‡School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
| | | | - Andre G Tempone
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
- ∥Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, CEP 05403-000 São Paulo, SP, Brazil
| | - Roberto G S Berlinck
- †Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
26
|
Jamison MT, Molinski TF. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. JOURNAL OF NATURAL PRODUCTS 2015; 78:557-561. [PMID: 25738226 DOI: 10.1021/np501052a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Investigation of antifungal natural products from the marine sponge Pseudaxinella reticulata from the Bahamas led to the discovery of new crambescin homologues (1, 2) and enantiomers (3, 4) of known natural products. The cyclic-guanidine structures were solved through analysis of 2D NMR, MS-MS, and CD data. The absolute configurations of 1-4 were established as 13R-opposite of known homologues reported from Crambe crambe obtained from the Mediterranean Sea-by comparison of their CD spectra with predicted Cotton effects obtained from DFT calculations. Antifungal activities of 1-4 against the pathogenic strains Candida albicans and Cryptococcus sp. were observed to correlate potency (MIC50 and MIC90) with the length of the alkyl side chain.
Collapse
Affiliation(s)
- Matthew T Jamison
- †Department of Chemistry and Biochemistry and §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC-0358, La Jolla, California 92093-0358, United States
| | - Tadeusz F Molinski
- †Department of Chemistry and Biochemistry and §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC-0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
27
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2014. [DOI: 10.1039/c4np90041c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|