1
|
Yang X, Hong K, Zhang S, Zhang Z, Zhou S, Huang J, Xu X, Hu W. Asymmetric Three-Component Reaction of Two Diazo Compounds and Hyrdroxylamine Derivatives for the Access to Chiral α-Alkoxy-β-amino-carboxylates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangji Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sujie Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Brambilla E, Abbiati G, Caselli A, Pirovano V, Rossi E. Coinage metal carbenes in heterocyclic synthesis via formation of new carbon-heteroatom bonds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Wang C, Zhu RY, Liao K, Zhou F, Zhou J. Enantioselective Cu(I)-Catalyzed Cycloaddition of Prochiral Diazides with Terminal or 1-Iodoalkynes. Org Lett 2020; 22:1270-1274. [PMID: 31999130 DOI: 10.1021/acs.orglett.9b04522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an unprecedented highly enantioselective desymmetric Cu(I)-catalyzed 1,3-dipolar cycloaddition of diazides with terminal alkynes and 1-iodoalkynes, affording tertiary alcohols bearing a 1,2,3-triazole moiety in high yield and excellent ee value. PYBOX ligands with a C4 shielding group once again show the promising ability to achieve higher enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 200032 , China
| |
Collapse
|
5
|
Zhu J, Li R, Su Y, Gu P. Synthesis of Isoindoles from Intramolecular Condensation of Benzyl Azides with α-Aryldiazoesters. J Org Chem 2019; 84:5813-5820. [PMID: 30895788 DOI: 10.1021/acs.joc.8b03180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed intramolecular condensation of the benzyl azides with α-aryldiazoesters was explored. The reaction proceeded through the nucleophilic attack of the organic azide onto a rhodium carbenoid, while releasing nitrogen gas, affording the α-imino esters as the primary product. Tautomerization of the imino esters efficiently gave 13 desired isoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Chemistry , Ningxia University , Yinchuan 750021 , China
| | - Rui Li
- Department of Chemistry , Ningxia University , Yinchuan 750021 , China
| | - Yan Su
- Department of Chemistry , Ningxia University , Yinchuan 750021 , China
| | - Peiming Gu
- Department of Chemistry , Ningxia University , Yinchuan 750021 , China
| |
Collapse
|
6
|
Zhang S, Zhao Y. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water. J Mol Recognit 2018; 32:e2769. [PMID: 30419606 DOI: 10.1002/jmr.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface-core double cross-linking of template-containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest-complementary binding sites. An important property of MINP-based receptors is the surface-cross-linking between the propargyl groups of the surfactants and a diazide cross-linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross-linkers with an alkoxyamine group enabled two-stage double surface-cross-linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.
Collapse
Affiliation(s)
- Shize Zhang
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. J Org Chem 2018; 83:12103-12121. [DOI: 10.1021/acs.joc.8b02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tomomi Ueda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
8
|
Li Y, Yang H, Zhai H. The Expanding Utility of Rhodium-Iminocarbenes: Recent Advances in the Synthesis of Natural Products and Related Scaffolds. Chemistry 2018; 24:12757-12766. [PMID: 29575147 DOI: 10.1002/chem.201800689] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/15/2018] [Indexed: 01/29/2023]
Abstract
Rhodium-iminocarbenes that are derived from N-sulfonyl-1,2,3-triazoles have become an important class of reactive species and useful intermediates in organic synthesis. Over the last several years, many practical and versatile approaches involving rhodium-iminocarbene intermediates to synthetically challenging molecules (scaffolds) have been developed. This Minireview mainly summarizes the recent advance of rhodium-iminocarbene involved reactions in the synthesis of natural products and their related scaffolds by the end of 2017. Several applications in important pharmaceuticals are documented as well.
Collapse
Affiliation(s)
- Yun Li
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, China
| | - Hongjian Yang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, China
| | - Hongbin Zhai
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, 518055, China
| |
Collapse
|
9
|
Metal-catalyzed synthesis of cyclic imines: a versatile scaffold in organic synthesis. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2264-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Affiliation(s)
| | - Maryam Zirak
- Department
of Chemistry, Payame Noor University, Tehran 19395-3697, Iran
| |
Collapse
|
11
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Qiao JB, Zhao YM, Gu P. Asymmetric Intramolecular Desymmetrization of meso-α,α'-Diazido Alcohols with Aryldiazoacetates: Assembly of Chiral C3 Fragments with Three Continuous Stereocenters. Org Lett 2016; 18:1984-7. [PMID: 27109428 DOI: 10.1021/acs.orglett.6b00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chiral Cu-complex-catalyzed intramolecular interception of meso-α,α'-diazido alcohols with aryldiazoacetates is explored. Most of the enantioenriched α-imino esters with three continuous stereocenters are produced with good to excellent yield and enantioselectivity, and a chiral pocket model is proposed for rationalization of the asymmetric desymmetrization.
Collapse
Affiliation(s)
- Jin-Bao Qiao
- Key Laboratory of Energy Sources & Engineering, State Key Laboratory Cultivation Base of Natural Gas Conversion and Department of Chemistry, Ningxia University , Yinchuan 750021, China
| | - Yu-Ming Zhao
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Peiming Gu
- Key Laboratory of Energy Sources & Engineering, State Key Laboratory Cultivation Base of Natural Gas Conversion and Department of Chemistry, Ningxia University , Yinchuan 750021, China
| |
Collapse
|
13
|
Chou CH, Chen YY, Rajagopal B, Tu HC, Chen KL, Wang SF, Liang CF, Tyan YC, Lin PC. Thermally Induced Denitrogenative Annulation for the Synthesis of Dihydroquinolinimines and Chroman-4-imines. Chem Asian J 2016; 11:757-65. [DOI: 10.1002/asia.201501239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Chih-Hung Chou
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Ying-Yu Chen
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Basker Rajagopal
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Hsiu-Chung Tu
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Kuan-Lin Chen
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Chien-Fu Liang
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences; Kaohsiung Medical University; 100, Shih-Chuan 1st Rd. Kaohsiung 80708 Taiwan
| | - Po-Chiao Lin
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| |
Collapse
|
14
|
Yao R, Rong G, Yan B, Qiu L, Xu X. Dual-Functionalization of Alkynes via Copper-Catalyzed Carbene/Alkyne Metathesis: A Direct Access to the 4-Carboxyl Quinolines. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02648] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ruwei Yao
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guangwei Rong
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bin Yan
- Jinghua Anti-Cancer
Pharmaceutical Engineering Center, Nantong 226407, China
| | - Lihua Qiu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Jinghua Anti-Cancer
Pharmaceutical Engineering Center, Nantong 226407, China
| |
Collapse
|
15
|
Cheng QQ, Yedoyan J, Arman H, Doyle MP. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones. J Am Chem Soc 2015; 138:44-7. [DOI: 10.1021/jacs.5b10860] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qing-Qing Cheng
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Julietta Yedoyan
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department
of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Naganawa Y, Namba T, Kawagishi M, Nishiyama H. Construction of a Chiral Silicon Center by Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation. Chemistry 2015; 21:9319-22. [DOI: 10.1002/chem.201501568] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/05/2022]
|