1
|
Lin Z, Kaniraj JP, Holzheimer M, Nigou J, Gilleron M, Hekelaar J, Minnaard AJ. Asymmetric Total Synthesis and Structural Revision of DAT 2, an Antigenic Glycolipid from Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2024; 63:e202318582. [PMID: 38456226 PMCID: PMC11482735 DOI: 10.1002/anie.202318582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
DAT2 is a member of the diacyl trehalose family (DAT) of antigenic glycolipids located in the mycomembrane of Mycobacterium tuberculosis (Mtb). Recently it was shown that the molecular structure of DAT2 had been incorrectly assigned, but the correct structure remained elusive. Herein, the correct molecular structure of DAT2 and its methyl-branched acyl substituent mycolipanolic acid is determined. For this, four different stereoisomers of mycolipanolic acid were prepared in a stereoselective and unified manner, and incorporated into DAT2. A rigorous comparison of the four isomers to the DAT isolated from Mtb H37Rv by NMR, HPLC, GC, and mass spectrometry allowed a structural revision of mycolipanolic acid and DAT2. Activation of the macrophage inducible Ca2+-dependent lectin receptor (Mincle) with all four stereoisomers shows that the natural stereochemistry of mycolipanolic acid / DAT2 provides the strongest activation, which indicates its high antigenicity and potential application in serodiagnostics and vaccine adjuvants.
Collapse
Affiliation(s)
- Zonghao Lin
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jeya Prathap Kaniraj
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Johan Hekelaar
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
2
|
Vašíček T, Arensmeyer B, Monti A, Zamyatina A. Versatile approach towards fully desymmetrized trehalose with a novel set of orthogonal protecting groups. Front Chem 2024; 11:1332837. [PMID: 38274896 PMCID: PMC10808579 DOI: 10.3389/fchem.2023.1332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Trehalose-containing glycans play an essential role in bacterial pathogenesis, host-pathogen interaction, and cell signaling. The investigation of trehalose uptake and metabolism in Mycobacteria using synthetic desymmetrized trehalose probes is an important approach for the development of diagnostic tools and potential therapeutics for tuberculosis. Trehalose-derived mycobacterial glycolipids activate the innate immune response through recognition by the C-type lectin Mincle, justifying efforts to develop novel trehalose-based Mincle-dependent adjuvants. The chemical synthesis of trehalose-based glycoconjugates, glycolipids, and small-molecule trehalose probes requires the challenging chemical desymmetrization of eight hydroxyl groups in a C 2-symmetric disaccharide αGlc(1↔1)αGlc. Using a novel set of orthogonal protecting groups, we developed a flexible multiscale synthetic approach to a collection of differently and variably protected fully desymmetrized trehalose derivatives, ready for final chemical modification with relevant functional or reporter groups. Using a regioselective and site-specific protecting group strategy, we performed multiple symmetry-breaking operations, resulting in a library of trehalose-derived orthogonally protected building blocks as a versatile source for the synthesis of complex trehalose-containing glycans.
Collapse
Affiliation(s)
| | | | | | - Alla Zamyatina
- Department of Chemistry, Institute of Organic Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Sharma D, Gautam S, Srivastava N, Bisht D. In silico Screening of Food and Drug Administration-approved Compounds against Trehalose 2-sulfotransferase (Rv0295c) in Mycobacterium tuberculosis: Insights from Molecular Docking and Dynamics Simulations. Int J Mycobacteriol 2024; 13:73-82. [PMID: 38771283 DOI: 10.4103/ijmy.ijmy_20_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
4
|
Chiu CH, Tan JJY, Mondal S, Lin CH, Mong KKT. Sulfoglycolipids and Related Analogues of Mycobacterium tuberculosis: Chemical Synthesis and Immunological Studies. ChemMedChem 2023; 18:e202300399. [PMID: 37788979 DOI: 10.1002/cmdc.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes tuberculosis as one major threat to human health, which has been deteriorated owing to the emerging multidrug resistance. Mtb contains a complex lipophilic cell wall structure that is important for bacterial persistence. Among the lipid components, sulfoglycolipids (SGLs), known to induce immune cell responses, are composed of a trehalose core attached with a conserved sulfate group and 1-4 fatty acyl chains in an asymmetric pattern. At least one of these acyl chains is polymethylated with 3-12 methyl branches. Although Mtb SGL can be isolated from bacterial culture, resulting SGL is still a homologous mixture, impeding accurate research studies. This up-to-date review covers the chemical synthesis and immunological studies of Mtb SGLs and structural analogues, with an emphasis on the development of new glycosylation methods and the asymmetric synthesis of polymethylated scaffolds. Both are critical to advance further research on biological functions of these complicated SGLs.
Collapse
Affiliation(s)
- Cheng-Hsin Chiu
- Applied Chemistry Department, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu City, 30010, Taiwan (China
| | - Janet Jia-Yin Tan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, 11529, Taiwan (China
| | - Soumik Mondal
- Applied Chemistry Department, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu City, 30010, Taiwan (China
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, 11529, Taiwan (China
- Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu City, 30010, Taiwan (China
| |
Collapse
|
5
|
Nalpe SS, Jana S, Kulkarni SS. Total Synthesis and Structure Confirmation of Fusaroside. J Org Chem 2023. [PMID: 37291052 DOI: 10.1021/acs.joc.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, we synthesized the proposed structure of the fungal glycolipid fusaroside and suggested corrections in its structure with respect to the positions of the double bonds in the lipid portion. Herein, we report the first total synthesis of the proposed revised structure of fusaroside and thereby confirm its structure. The synthesis involved Julia-Kocienski olefination for the construction of fatty acid and its coupling with trehalose at the O4 position followed by late-stage gem-dimethylation as key steps.
Collapse
Affiliation(s)
- Sudhakar S Nalpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Nalpe SS, Jana S, Kulkarni SS. Total Synthesis of a Trehalose-Containing Lipooligosaccharide Analogue from Mycobacterium linda. Org Lett 2023; 25:1717-1721. [PMID: 36867005 DOI: 10.1021/acs.orglett.3c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A short and efficient methodology has been developed to synthesize an analogue of a lipooligosaccharide from Mycobacterium linda isolated from Crohn's disease. The total synthesis of the tetrasaccharide was achieved via a convergent [2 + 2] glycosylation approach. The key features of the synthesis involve the selective functionalization of a trehalose core via highly regioselective acylations and regioselective glycosylations. The synthesis was completed via a longest linear sequence of 14 steps in a 14.2% overall yield.
Collapse
Affiliation(s)
- Sudhakar S Nalpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
7
|
Gupta S, Sharma A, Mondal D, Bera S. Advancement of the Cleavage Methods of Carbohydrate-derived Isopropylidene and Cyclohexylidene Ketals. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Carbohydrates, amino acids, and nucleosides, the fundamental building blocks of complex biomolecules in nature, are essential starting materials for the fabrication of natural and unnatural structural entities, which necessitate the masking and demasking of various functional groups with the utmost chemoselectivity, mildness, and efficiency to avoid unintended bond breaking and formation, as well as associated reactions. Ketals, benzylidene, methoxymethyl, p-methoxybenzyl, silyl ethers, trityl, tert-butyl carbamate, and other functional groups are widely used in modern organic synthesis. In carbohydrate chemistry, the commonly used protecting functionality of isopropylidene and cyclohexylidene ketals necessitates effective methods for selective cleavage. This review summarises different methods for deblocking isopropylidene and cyclohexylidene ketals using inorganic acids, Lewis acid, silica-supported inorganic acids, Amberlite-120 (H+) resin, phosphotungstic acid, Nafion-H, NaBArF4.2H2O, montmorillonite clay, Dowex 50W-X8, camphorsulphonic acid (CSA), ceric ammonium nitrate, molecular iodine, ionic liquids, zeolites and so on.
Collapse
Affiliation(s)
- Shilpi Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Anjali Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
8
|
Jana S, Sarpe VA, Kulkarni SS. Total Synthesis and Structure Revision of a Fungal Glycolipid Fusaroside. Org Lett 2021; 23:1664-1668. [PMID: 33591200 DOI: 10.1021/acs.orglett.1c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a strategy for the total synthesis of a structurally unique fungal glycolipid fusaroside. The first total synthesis of the proposed structure involved construction of the complex, branched lipid chain having a variety of alkenes with E stereochemistry and attachment of the masked α,β-unsaturated β-keto acid at the O-4 position of trehalose as key steps. We propose a revision in the structure of fusaroside, particularly the position of olefins in the lipid chain.
Collapse
Affiliation(s)
- Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vikram A Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Hussain H, Ali I, Elizbit, Hussain W, Mamadalieva NZ, Hussain A, Ali M, Ahmed I, Ullah I, Green IR. Synthetic Studies towards Fungal glycosides: An Overview. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201105160034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungi have provided intriguing chemical diversity and have additionally proven to
be a tremendous source for a great variety of therapeutic molecules. Various fungal glycosides
have been reported from fungi and the majority of these metabolites possess cytotoxic and
antimicrobial effects. Although natural products are obtained in most cases in small amounts
from the specific natural source, total syntheses of these valuable commodities remain one of
the most important ways of obtaining them on a large scale for more detailed and comprehensive
biological studies. In addition, the total synthesis of secondary metabolites is a useful
tool, not only for the disclosure of novel complex pharmacologically active molecules but also
for the establishment of cutting-edge methodologies in synthetic chemistry. Numerous fungal
glycosides have been synthesized in the last four decades regarding the following natural
product classes viz., tetramic acid glycosides (epicoccamides A and D), polyketide glycosides (TMC-151C), 2-pyrone
glycosides (epipyrone A), diterpene glycosides (sordarin), depside glycosides (CRM646-A and –B, KS-501 and KS-
502), caloporosides (caloporoside A), glycolipids (emmyguyacins A and B, acremomannolipin A), and cerebrosides
(cerebroside B, Asperamide B, phalluside-1, Sch II). The current literature review about fungal glycoside synthetic
studies is, therefore, of interest for a wide range of scientists and researchers in the field of organic, natural product,
and medicinal chemists as it outlines key strategies of fungal glycosides and, in particular, glycosylation, the known
biological and pharmacological effects of these natural compounds have afforded a new dimension of exposure.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Iftikhar Ali
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, Shandong Province (250014), China
| | - Elizbit
- Department Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad, Pakistan
| | - Wahid Hussain
- Department of Botany, Government Post Graduate College Parachinar, District Kurram, Pakistan
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Amjad Hussain
- Department of Chemistry University of Okara, Okara, Pakistan
| | - Maroof Ali
- College of life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, England, United Kingdom
| | - Izhar Ullah
- Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| |
Collapse
|
10
|
Dadhich R, Mishra M, Ning S, Jana S, Sarpe VA, Mahato J, Duan M, Kulkarni SS, Kapoor S. A Virulence-Associated Glycolipid with Distinct Conformational Attributes: Impact on Lateral Organization of Host Plasma Membrane, Autophagy, and Signaling. ACS Chem Biol 2020; 15:740-750. [PMID: 32078292 DOI: 10.1021/acschembio.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) serves as the epitome of how lipids-next to proteins-are utilized as central effectors in pathogenesis. It synthesizes an arsenal of structurally atypical lipids (C60-C90) to impact various membrane-dependent steps involved in host interactions. There is a growing precedent to support insertion of these exposed lipids into the host membrane as part of their mode of action. However, the vital role of specific virulence-associated lipids in modulating cellular functions by altering the host membrane organization and associated signaling pathways remain unanswered questions. Here, we combined chemical synthesis, biophysics, cell biology, and molecular dynamics simulations to elucidate host membrane structure modifications and modulation of membrane-associated signaling using synthetic Mycobacterium tuberculosis sulfoglycolipids (Mtb SL). We reveal that Mtb SL reorganizes the host cell plasma membrane domains while showing higher preference for fluid membrane regions. This rearrangement is governed by the distinct conformational states sampled by SL acyl chains. Physicochemical assays with SL analogues reveal insights into their structure-function relationships, highlighting specific roles of lipid acyl chains and headgroup, along with effects on autophagy and cytokine profiles. Our findings uncover a mechanism whereby Mtb uses specific chemical moieties on its lipids to fine-tune host lipid interactions and confer control of the downstream functions by modifying the cell membrane structure and function. These findings will inspire development of chemotherapeutics against Mtb by counteracting their effects on the host-cell membrane.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manjari Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shangbo Ning
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram A. Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mojie Duan
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Abstract
Chemical synthesis of trehalose glycolipids such as DAT, TDM, SL-1, SL-3, and Ac2SGL from MTb, emmyguyacins from fungi, succinoyl trehalose from rhodococcus, and maradolipids from worms, as well as mycobacterial oligosaccharides is reviewed.
Collapse
Affiliation(s)
- Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | |
Collapse
|
12
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
13
|
Gorelik D, Lin YC, Briceno-Strocchia AI, Taylor MS. Diarylborinic Acid-Catalyzed, Site-Selective Sulfation of Carbohydrate Derivatives. J Org Chem 2019; 84:900-908. [PMID: 30620184 DOI: 10.1021/acs.joc.8b02792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sulfated carbohydrates have been implicated in diverse biological processes, with the position and extent of sulfation of a glycoside often playing important roles in determining the affinity and specificity of its binding to a biomolecular partner. Methods for the site-selective introduction of sulfate groups to carbohydrates are thus of interest. Here, we describe the development of a diarylborinic acid-catalyzed protocol for selective sulfation of pyranoside derivatives at the equatorial position of a cis-1,2-diol group. This method, which employs the sulfur trioxide-trimethylamine complex as the electrophile, has been employed for installation of a sulfate group at the 3-position of a range of galacto- and mannopyranosides, including substrates having a free primary OH group. By using a full equivalent of the diarylborinic acid, selective syntheses of more complex monosulfated glycosides, namely, a 3'-sulfolactose derivative and 3'-sulfo-β-galactosylceramide, have been accomplished. Preliminary kinetics experiments suggested that the catalyst resting state is a tetracoordinate diarylborinic ester that reacts with the SO3 complex in the turnover-limiting step. Catalyst inhibition by the pyranoside sulfate product and trialkylamine byproduct of the reaction was demonstrated.
Collapse
Affiliation(s)
- Daniel Gorelik
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| | - Yu Chen Lin
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| | | | - Mark S Taylor
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
14
|
Jana S, Sarpe VA, Kulkarni SS. Total Synthesis of Emmyguyacins A and B, Potential Fusion Inhibitors of Influenza Virus. Org Lett 2018; 20:6938-6942. [DOI: 10.1021/acs.orglett.8b03073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vikram A. Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
15
|
Podilapu AR, Emmadi M, Kulkarni SS. Expeditious Synthesis of Ieodoglucomides A and B from the Marine-Derived Bacterium Bacillus licheniformis. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ananda Rao Podilapu
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Madhu Emmadi
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
16
|
James CA, Yu KKQ, Gilleron M, Prandi J, Yedulla VR, Moleda ZZ, Diamanti E, Khan M, Aggarwal VK, Reijneveld JF, Reinink P, Lenz S, Emerson RO, Scriba TJ, Souter MNT, Godfrey DI, Pellicci DG, Moody DB, Minnaard AJ, Seshadri C, Van Rhijn I. CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chem Biol 2018; 25:392-402.e14. [PMID: 29398561 DOI: 10.1016/j.chembiol.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Mycobacterial cell wall lipids bind the conserved CD1 family of antigen-presenting molecules and activate T cells via their T cell receptors (TCRs). Sulfoglycolipids (SGLs) are uniquely synthesized by Mycobacterium tuberculosis, but tools to study SGL-specific T cells in humans are lacking. We designed a novel hybrid synthesis of a naturally occurring SGL, generated CD1b tetramers loaded with natural or synthetic SGL analogs, and studied the molecular requirements for TCR binding and T cell activation. Two T cell lines derived using natural SGLs are activated by synthetic analogs independently of lipid chain length and hydroxylation, but differentially by saturation status. By contrast, two T cell lines derived using an unsaturated SGL synthetic analog were not activated by the natural antigen. Our data provide a bioequivalence hierarchy of synthetic SGL analogs and SGL-loaded CD1b tetramers. These reagents can now be applied to large-scale translational studies investigating the diagnostic potential of SGL-specific T cell responses or SGL-based vaccines.
Collapse
Affiliation(s)
- Charlotte A James
- Department of Medicine, University of Washington Medical Center, 750 Republican Street, Suite E663, Seattle, WA 98115, USA; Department of Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA 98195, USA
| | - Krystle K Q Yu
- Department of Medicine, University of Washington Medical Center, 750 Republican Street, Suite E663, Seattle, WA 98115, USA
| | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Prandi
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vijayendar R Yedulla
- Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, the Netherlands
| | - Zuzanna Z Moleda
- Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, the Netherlands
| | | | - Momin Khan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Josephine F Reijneveld
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Peter Reinink
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Stefanie Lenz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7935, South Africa
| | - Michael N T Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - D Branch Moody
- Department of Rheumatology, Allergy & Immunology, Brigham and Women's Hospital, 60 Fenwood Road, Room 6006V, Boston, MA 02115, USA
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, the Netherlands
| | - Chetan Seshadri
- Department of Medicine, University of Washington Medical Center, 750 Republican Street, Suite E663, Seattle, WA 98115, USA.
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands; Department of Rheumatology, Allergy & Immunology, Brigham and Women's Hospital, 60 Fenwood Road, Room 6006V, Boston, MA 02115, USA.
| |
Collapse
|
17
|
O'Neill MK, Piligian BF, Olson CD, Woodruff PJ, Swarts BM. Tailoring Trehalose for Biomedical and Biotechnological Applications. PURE APPL CHEM 2017; 89:1223-1249. [PMID: 29225379 PMCID: PMC5718624 DOI: 10.1515/pac-2016-1025] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-reducing sugar whose ability to stabilize biomolecules has brought about its widespread use in biological preservation applications. Trehalose is also an essential metabolite in a number of pathogens, most significantly the global pathogen Mycobacterium tuberculosis, though it is absent in humans and other mammals. Recently, there has been a surge of interest in modifying the structure of trehalose to generate analogues that have applications in biomedical research and biotechnology. Non-degradable trehalose analogues could have a number of advantages as bioprotectants and food additives. Trehalose-based imaging probes and inhibitors are already useful as research tools and may have future value in the diagnosis and treatment of tuberculosis, among other uses. Underlying the advancements made in these areas are novel synthetic methods that facilitate access to and evaluation of trehalose analogues. In this review, we focus on both aspects of the development of this class of molecules. First, we consider the chemical and chemoenzymatic methods that have been used to prepare trehalose analogues and discuss their prospects for synthesis on commercially relevant scales. Second, we describe ongoing efforts to develop and deploy detectable trehalose analogues, trehalose-based inhibitors, and non-digestible trehalose analogues. The current and potential future uses of these compounds are discussed, with an emphasis on their roles in understanding and combatting mycobacterial infection.
Collapse
Affiliation(s)
- Mara K O'Neill
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Brent F Piligian
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Claire D Olson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
18
|
Jana S, Mondal S, Kulkarni SS. Chemical Synthesis of Biosurfactant Succinoyl Trehalose Lipids. Org Lett 2017; 19:1784-1787. [DOI: 10.1021/acs.orglett.7b00550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sumana Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Chaube MA, Sarpe VA, Jana S, Kulkarni SS. First total synthesis of trehalose containing tetrasaccharides from Mycobacterium smegmatis. Org Biomol Chem 2016; 14:5595-8. [DOI: 10.1039/c6ob00412a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis of three important trehalose containing tetrasaccharides isolated fromMycobacterium smegmatisis reported for the first time, using regioselective opening of benzylidene acetals and stereoselective glycosylations as key steps.
Collapse
Affiliation(s)
| | - Vikram A. Sarpe
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Suvarn S. Kulkarni
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
20
|
Sarpe VA, Jana S, Kulkarni SS. Synthesis of Mycobacterium tuberculosis Sulfolipid-3 Analogues and Total Synthesis of the Tetraacylated Trehaloglycolipid of Mycobacterium paraffinicum. Org Lett 2015; 18:76-9. [PMID: 26652194 DOI: 10.1021/acs.orglett.5b03300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel methodology for the regioselective O6 acylation of the 2,3-diacyl trehaloses to access Mycobacterium tuberculosis sulfolipid SL-3 and related 2,3,6-triester glycolipid analogues is reported for the first time. The methodology was successfully extended to achieve the first total synthesis of the tetraacylated trehalose glycolipid from Mycobacterium paraffinicum. The corresponding 2,3,6'-triesters trehalose glycolipids were also synthesized starting from the common 2,3-diacyl trehalose. These synthetic glycolipids are potential candidates for serodiagnosis and vaccine development for tuberculosis.
Collapse
Affiliation(s)
- Vikram A Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
21
|
Chaube MA, Kulkarni SS. First Total Synthesis of Trehalose-Containing Branched Oligosaccharide OSE-1 ofMycobacterium gordonae(Strain 990). Chemistry 2015; 21:13544-8. [DOI: 10.1002/chem.201502521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/31/2023]
|