1
|
Bharate JB, Ådén J, Gharibyan A, Adolfsson DE, Jayaweera SW, Singh P, Vielfort K, Tyagi M, Bonde M, Bergström S, Olofsson A, Almqvist F. K 2S 2O 8-mediated coupling of 6-amino-7-aminomethyl-thiazolino-pyridones with aldehydes to construct amyloid affecting pyrimidine-fused thiazolino-2-pyridones. Org Biomol Chem 2021; 19:9758-9772. [PMID: 34730163 DOI: 10.1039/d1ob01580j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein present the synthesis of diversely functionalized pyrimidine fused thiazolino-2-pyridones via K2S2O8-mediated oxidative coupling of 6-amino-7-(aminomethyl)-thiazolino-2-pyridones with aldehydes. The developed protocol is mild, has wide substrate scope, and does not require transition metal catalyst or base. Some of the synthesized compounds have an ability to inhibit the formation of Amyloid-β fibrils associated with Alzheimer's disease, while others bind to mature amyloid-β and α-synuclein fibrils.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| | - Anna Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Dan E Adolfsson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| | | | - Pardeep Singh
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| | - Katarina Vielfort
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Mohit Tyagi
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
2
|
Kamat V, Yallur BC, Poojary B, Patil VB, Nayak SP, Krishna PM, Joshi SD. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Vinuta Kamat
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | - Basappa C. Yallur
- Department of Chemistry Ramaiah Institute of Technology MSR Nagar Bangalore Karnataka India
| | - Boja Poojary
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | - Veerabhadragouda B. Patil
- Institute of Energetic Materials, Faculty of Chemical Technology University of Pardubice Doubravice 41 Pardubice 532 10 Czech Republic
| | - Suresh P. Nayak
- Department of Post‐Graduate Studies & Research in Chemistry Mangalore University Mangalagangothri Mangalore Dakshina Kannada, Karnataka 574199 India
| | | | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S. E. T.'s College of Pharmacy Sangolli Rayanna Nagar Dharwad Karnataka 580 002 India
| |
Collapse
|
3
|
Adolfsson DE, Tyagi M, Singh P, Deuschmann A, Ådén J, Gharibyan AL, Jayaweera SW, Lindgren AEG, Olofsson A, Almqvist F. Intramolecular Povarov Reactions for the Synthesis of Chromenopyridine Fused 2-Pyridone Polyheterocycles Binding to α-Synuclein and Amyloid-β Fibrils. J Org Chem 2020; 85:14174-14189. [PMID: 33099999 PMCID: PMC7660745 DOI: 10.1021/acs.joc.0c01699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Abstract
A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid β fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.
Collapse
Affiliation(s)
| | - Mohit Tyagi
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | - Pardeep Singh
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | | - Jörgen Ådén
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | | | | | | - Anders Olofsson
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | |
Collapse
|
4
|
Singh P, Adolfsson DE, Ådén J, Cairns AG, Bartens C, Brännström K, Olofsson A, Almqvist F. Pyridine-Fused 2-Pyridones via Povarov and A3 Reactions: Rapid Generation of Highly Functionalized Tricyclic Heterocycles Capable of Amyloid Fibril Binding. J Org Chem 2019; 84:3887-3903. [DOI: 10.1021/acs.joc.8b03015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | - Christian Bartens
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, Hannover 30167, Germany
| | | | | | | |
Collapse
|
5
|
Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. mBio 2016; 7:e00221-16. [PMID: 27118587 PMCID: PMC4850256 DOI: 10.1128/mbio.00221-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.
Collapse
|
6
|
Singh P, Chorell E, Krishnan KS, Kindahl T, Åden J, Wittung-Stafshede P, Almqvist F. Synthesis of Multiring Fused 2-Pyridones via a Nitrene Insertion Reaction: Fluorescent Modulators of α-Synuclein Amyloid Formation. Org Lett 2015; 17:6194-7. [DOI: 10.1021/acs.orglett.5b03190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pardeep Singh
- Umeå University, Department of Chemistry, 90187 Umeå, Sweden
| | - Erik Chorell
- Umeå University, Department of Chemistry, 90187 Umeå, Sweden
| | | | - Tomas Kindahl
- Umeå University, Department of Chemistry, 90187 Umeå, Sweden
| | - Jörgen Åden
- Umeå University, Department of Chemistry, 90187 Umeå, Sweden
| | | | | |
Collapse
|
7
|
Janikowska K, Rachoń J, Makowiec S. Acyl Meldrum's acid derivatives: application in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n07abeh004441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Makowiec S, Najda E, Janikowska K. Thermal Decomposition of Carbamoyl Meldrum's Acids: A Starting Point for the Preparation of 1,3-Oxazine Derivatives. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry; Gdansk University of Technology; Narutowicza 11/12 80-952 Gdansk Poland
| | - Ewelina Najda
- Department of Organic Chemistry, Faculty of Chemistry; Gdansk University of Technology; Narutowicza 11/12 80-952 Gdansk Poland
| | - Karolina Janikowska
- Department of Organic Chemistry, Faculty of Chemistry; Gdansk University of Technology; Narutowicza 11/12 80-952 Gdansk Poland
| |
Collapse
|
9
|
Jha RR, Saunthwal RK, Verma AK. Stereoselective tandem synthesis of thiazolo fused naphthyridines and thienopyridines from o-alkynylaldehydes via Au(iii)-catalyzed regioselective 6-endo-dig ring closure. Org Biomol Chem 2014; 12:552-6. [DOI: 10.1039/c3ob42035c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M, Lindgren AE, Hufnagel DA, Bhattacharya M, Tessier PM, Wittung-Stafshede P, Almqvist F, Chapman MR. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. CHEMISTRY & BIOLOGY 2013; 20:1245-54. [PMID: 24035282 PMCID: PMC4243843 DOI: 10.1016/j.chembiol.2013.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation. The ability of inhibitor compounds to stop growing CsgA fibers was compared to the same property of the CsgA chaperone, CsgE. CsgE blocked CsgA amyloid assembly and arrested polymerization when added to actively polymerizing fibers. Additionally, CsgE and the 2-pyridone inhibitors prevented biofilm formation by Escherichia coli at the air-liquid interface of a static culture. We demonstrate that curli amyloid assembly and curli-dependent biofilm formation can be modulated not only by protein chaperones, but also by "chemical chaperones."
Collapse
Affiliation(s)
- Emma K. Andersson
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Christoffer Bengtsson
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Margery L. Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Erik Chorell
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Magnus Sellstedt
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - David A. Hufnagel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Moumita Bhattacharya
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Fredrik Almqvist
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R. Chapman
- Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
11
|
Mechanism of the Reaction of Amines with 5-[(Aryl- or Alkylamino)hydroxymethylene]-2,2-dimethyl-1,3-dioxane-4,6-diones in the Presence of Chlorotrimethylsilane (Me3SiCl). Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Horvath I, Sellstedt M, Weise C, Nordvall LM, Krishna Prasad G, Olofsson A, Larsson G, Almqvist F, Wittung-Stafshede P. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure. Arch Biochem Biophys 2013; 532:84-90. [PMID: 23399432 DOI: 10.1016/j.abb.2013.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/16/2022]
Abstract
In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Sellstedt M, Krishna Prasad G, Syam Krishnan K, Almqvist F. Directed diversity-oriented synthesis. Ring-fused 5- to 10-membered rings from a common peptidomimetic 2-pyridone precursor. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Zhou Q, Chu X, Tang W, Lu T. An efficient one-pot synthesis of 1,4-disubstituted 3-amino-2-pyridone derivatives via three-component reactions of alkynyl aldehydes and amines with ethyl 2-((diphenylmethylene)amino)acetate. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.03.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
P. Mahajan M, Singh P, Singh P, Kumar K, Kumar V, Bisetty K. Synthetic Studies on the Role of Substituents at C-3 Position on C3-C4 Bond Cleavage of β-Lactam Ring: Convenient Route for Diastereoselective Synthesis of Pyridin-2-ones. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Bengtsson C, Almqvist F. A selective intramolecular 5-exo-dig or 6-endo-dig cyclization en route to 2-furanone or 2-pyrone containing tricyclic scaffolds. J Org Chem 2011; 76:9817-25. [PMID: 22008034 PMCID: PMC3225090 DOI: 10.1021/jo201952p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ringfused bicyclic 2-pyridones exhibit interesting biological properties against pili assembly in uropathogenic Escherichia coli (Pinkner, J. S. et al. Proc. Natl. Acad. Sci. U. S. A.2006, 103, 17897-17902; Åberg, V. et al. Org. Biomol. Chem.2007, 5, 1827-1834) as well as curli formation (Cegelski, L. et al. Nat. Chem. Biol.2009, 5, 913-919). In the search for new ring-fused central fragments, highly selective synthetic routes to the 2-furanone or 2-pyrone containing tricyclic scaffolds 1 and 2 have been developed.
Collapse
|
18
|
Partyka DV. Transmetalation of Unsaturated Carbon Nucleophiles from Boron-Containing Species to the Mid to Late d-Block Metals of Relevance to Catalytic C−X Coupling Reactions (X = C, F, N, O, Pb, S, Se, Te). Chem Rev 2011; 111:1529-95. [DOI: 10.1021/cr1002276] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- David V. Partyka
- Creative Chemistry LLC, 2074 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Chorell E, Pinkner JS, Phan G, Edvinsson S, Buelens F, Remaut H, Waksman G, Hultgren SJ, Almqvist F. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J Med Chem 2010; 53:5690-5. [PMID: 20586493 DOI: 10.1021/jm100470t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pilicides block pili formation by binding to pilus chaperones and blocking their function in the chaperone/usher pathway in E. coli. Various C-2 substituents were introduced on the pilicide scaffold by design and synthetic method developments. Experimental evaluation showed that proper substitution of this position affected the biological activity of the compound. Aryl substituents resulted in pilicides with significantly increased potencies as measured in pili-dependent biofilm and hemagglutination assays. The structural basis of the PapD chaperone-pilicide interactions was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Erik Chorell
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bengtsson C, Almqvist F. Regioselective halogenations and subsequent Suzuki-Miyaura coupling onto bicyclic 2-pyridones. J Org Chem 2010; 75:972-5. [PMID: 20025251 DOI: 10.1021/jo902458g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A selective synthesis of 6-bromo-8-iodo dihydro thiazolo ring-fused 2-pyridones is described. These halogenated 2-pyridones are selectively arylated by sequential Suzuki-Miyaura couplings. This approach can advantageously be used to synthesize focused libraries of substituted ring-fused 2-pyridones, a class of compounds with novel antibacterial properties.
Collapse
|
21
|
Sellstedt M, Almqvist F. A novel heterocyclic scaffold formed by ring expansion of a cyclic sulfone to sulfonamides. Org Lett 2010; 11:5470-2. [PMID: 19891461 DOI: 10.1021/ol9023024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel heterocyclic scaffold with a peptidomimetic backbone structure has been synthesized. The scaffold is formed by insertion of primary amines into a cyclic sulfone to give the corresponding ring-expanded sulfonamides. By varying the amine component, a series of potentially biologically interesting compounds has been synthesized.
Collapse
Affiliation(s)
- Magnus Sellstedt
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
22
|
Nomura M, Kanamori M, Yamaguchi Y, Tateno N, Fujita-Takayama C, Sugiyama T, Kajitani M. Hydrogen bonding interaction of CpCo(Dithiolene) complex with monocyclic 2-pyridonyl substituent and unexpected formation of dithiolene-fused tricyclic pyridone derivative. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Lipson VV, Gorobets NY. One hundred years of Meldrum’s acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol Divers 2009; 13:399-419. [DOI: 10.1007/s11030-009-9136-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 02/25/2009] [Indexed: 11/28/2022]
|