1
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
2
|
New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol Adv 2016; 34:473-491. [PMID: 26802363 DOI: 10.1016/j.biotechadv.2015.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
The discovery of new drugs can no longer rely primarily on terrestrial resources, as they have been heavily exploited for over a century. During the last few decades marine sources, particularly sponges, have proven to be a most promising source of new natural products for drug discovery. This review considers the order Dictyoceratida in the Phylum Porifera from which the largest number of new marine natural products have been reported over the period 2001-2012. This paper examines all the sponges from the order Dictyoceratida that were reported as new compounds during the time period in a comprehensive manner. The distinctive physical characteristics and the geographical distribution of the different families are presented. The wide structural diversity of the compounds produced and the variety of biological activities they exhibited is highlighted. As a representative of sponges, insights into this order and avenues for future effective natural product discovery are presented. The research institutions associated with the various studies are also highlighted with the aim of facilitating collaborative relationships, as well as to acknowledge the major international contributors to the discovery of novel sponge metabolites. The order Dictyoceratida is a valuable source of novel chemical structures which will continue to contribute to a new era of drug discovery.
Collapse
|
3
|
Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 2015; 13:3182-230. [PMID: 26006714 PMCID: PMC4446625 DOI: 10.3390/md13053182] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered.
Collapse
|
4
|
Bürki C, Bonjoch J, Bradshaw B, Villa G, Renaud P. Total Synthesis of Aignopsanes, A Class of Sesquiterpenes: (+)-Aignopsanoic Acid A, (−)-Methyl Aignopsanoate A, and (−)-Isoaignopsanoic A. Chemistry 2014; 21:395-401. [DOI: 10.1002/chem.201404766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/05/2022]
|
5
|
Villa G, Bradshaw B, Bürki C, Bonjoch J, Renaud P. Synthesis of the all-cis-trimethyldecalin fragment of unusual terpenes by radical-mediated protonolysis of an alkylboron derivative. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Johnson TA, Sohn J, Inman WD, Estee SA, Loveridge ST, Vervoort HC, Tenney K, Liu J, Ang KKH, Ratnam J, Bray WM, Gassner NC, Shen YY, Lokey RS, McKerrow JH, Boundy-Mills K, Nukanto A, Kanti A, Julistiono H, Kardono LBS, Bjeldanes LF, Crews P. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. JOURNAL OF NATURAL PRODUCTS 2011; 74:2545-55. [PMID: 22129061 PMCID: PMC3246535 DOI: 10.1021/np200673b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A high-throughput (HT) paradigm generating LC-MS-UV-ELSD-based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology, an extract of the Indo-Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including latrunculins (1-4, 10), fijianolides (5, 8, 9), mycothiazole (11), aignopsanes (6, 7), and sacrotride A (13). Compounds 1-5 and 8-11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including aignopsanoic acid B (13), apo-latrunculin T (14), 20-methoxy-fijianolide A (15), and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly, and 15 demonstrated modest microtubule-stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only one or two major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and/or new molecular structures using LC-MS-UV-ELSD-based libraries.
Collapse
Affiliation(s)
- Tyler A. Johnson
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720, United States
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
- To whom correspondence should be addressed. Tel: (831) 459-4280. . Tel: (831) 459-2603.
| | - Johann Sohn
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720, United States
| | - Wayne D. Inman
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Samarkand A. Estee
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Steven T. Loveridge
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Helene C. Vervoort
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Karen Tenney
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Junke Liu
- Eisai Inc., Natural Product Lead Discovery, Andover, Massachusetts 01810, United States
| | - Kenny Kean-Hooi Ang
- Sandler Center for Drug Discovery, University of California, San Francisco, California, 94143, United States
| | - Joseline Ratnam
- Sandler Center for Drug Discovery, University of California, San Francisco, California, 94143, United States
| | - Walter M. Bray
- UCSC Chemical Screening Center, University of California, Santa Cruz, California 95064, United States
| | - Nadine C. Gassner
- UCSC Chemical Screening Center, University of California, Santa Cruz, California 95064, United States
| | - Young Y. Shen
- Eisai Inc., Natural Product Lead Discovery, Andover, Massachusetts 01810, United States
| | - R. Scott Lokey
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
- UCSC Chemical Screening Center, University of California, Santa Cruz, California 95064, United States
| | - James H. McKerrow
- Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, Davis California 95616, United States
| | - Arif Nukanto
- Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, 16911
| | - Atit Kanti
- Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, 16911
| | - Heddy Julistiono
- Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, 16911
| | - Leonardus B. S. Kardono
- Indonesia & Research Center for Chemistry, Indonesian Institute of Science (LIPI), Serpong, Tangerang 15310, Indonesia
| | - Leonard F. Bjeldanes
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720, United States
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, United States
- To whom correspondence should be addressed. Tel: (831) 459-4280. . Tel: (831) 459-2603.
| |
Collapse
|
7
|
Ovenden SPB, Nielson JL, Liptrot CH, Willis RH, Tapiolas DM, Wright AD, Motti CA. Metachromins U-W: cytotoxic merosesquiterpenoids from an Australian specimen of the sponge Thorecta reticulata. JOURNAL OF NATURAL PRODUCTS 2011; 74:1335-1338. [PMID: 21513294 DOI: 10.1021/np200041v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Three new merosesquiterpenoids, metachromins U, V, and W (1-3), were isolated from a specimen of the marine sponge Thorecta reticulata collected off Hunter Island, Tasmania, Australia. Structures of the new compounds were elucidated through extensive NMR investigations and comparison with literature values. The cytotoxicities of 1-3 were assessed against a panel of human tumor cell lines (SF-268, H460, MCF-7, and HT-29) and a mammalian cell line (CHO-K1). All compounds were found to have 50% growth inhibition activities in the range 2.1-130 μM, with 2 being the most active (GI50 2.1-10 μM).
Collapse
Affiliation(s)
- Simon P B Ovenden
- Australian Institute of Marine Science, PMB no. 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Hochmuth T, Niederkrüger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J. Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids. Chembiochem 2011; 11:2572-8. [PMID: 21077090 DOI: 10.1002/cbic.201000510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many marine sponges contain massive numbers of largely uncultivated, phylogenetically diverse bacteria that seem to be important contributors to the chemistry of these animals. Insights into the diversity, origin, distribution, and function of their metabolic gene communities are crucial to dissect the chemical ecology and biotechnological potential of sponge symbionts. This study reveals a sharp dichotomy between high and low microbial abundance sponges with respect to polyketide synthase (PKS) gene content, the presence of methyl-branched fatty acids, and the presence of members of the symbiotic candidate phylum "Poribacteria". For the symbiont-rich sponge Cacospongia mycofijiensis, a source of the tubulin-inhibiting fijianolides (=laulimalides), near-exhaustive large-scale sequencing of PKS gene-derived PCR amplicons was conducted. Although these amplicons exhibit high diversity at the sequence level, almost all of them belong to a single, architecturally unique group of PKSs present in "Poribacteria" and are proposed to synthesize methyl-branched fatty acids. Three components of this PKS were studied in vitro, providing initial insight into its biochemistry.
Collapse
Affiliation(s)
- Thomas Hochmuth
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
10
|
Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol 2010; 21:808-18. [PMID: 20956079 DOI: 10.1016/j.copbio.2010.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 02/01/2023]
Abstract
This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics.
Collapse
Affiliation(s)
- Katharine R Watts
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
11
|
Abstract
The uses of metabolic profiling technologies such as mass spectrometry and nuclear magnetic resonance spectroscopy in parasitology have been multi-faceted. Traditional uses of spectroscopic platforms focused on determining the chemical composition of drugs or natural products used for treatment of parasitic infection. A natural progression of the use of these tools led to the generation of chemical profiles of the parasite in in vitro systems, monitoring the response of the parasite to chemotherapeutics, profiling metabolic consequences in the host organism and to deriving host-parasite interactions. With the dawn of the post-genomic era the paradigm in many research areas shifted towards Systems Biology and the integration of biomolecular interactions at the level of the gene, protein and metabolite. Although these technologies have yet to deliver their full potential, metabolic profiling has a key role to play in defining diagnostic or even prognostic metabolic signatures of parasitic infection and in deciphering the molecular mechanisms underpinning the development of parasite-induced pathologies. The strengths and weaknesses of the various spectroscopic technologies and analytical strategies are summarized here with respect to achieving these goals.
Collapse
|
12
|
Watts KR, Ratnam J, Ang KH, Tenney K, Compton JE, McKerrow J, Crews P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg Med Chem 2010; 18:2566-74. [PMID: 20303767 PMCID: PMC2893881 DOI: 10.1016/j.bmc.2010.02.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
Abstract
Human African trypanosomiasis (HAT, commonly known as African sleeping sickness) is categorized as a neglected disease, as it afflicts >50,000 people annually in sub-saharan Africa, and there are few formal programs in the world focused on drug discovery approaches for this disease. In this study, we examined the crude extracts of two fungal strains (Aspergillus fumigatus and Nectria inventa) isolated from deep water sediment which provided >99% growth inhibition at 1microg/mL of Trypanosoma brucei, the causative parasite of HAT. A collection of fifteen natural products was supplemented with six semi-synthetic derivatives and one commercially available compound. Twelve of the compounds, each containing a diketopiperazine core, showed excellent activity against T. brucei (IC(50)=0.002-40microM), with selectivity over mammalian cells as great as 20-fold. The trypanocidal diketopiperazines were also tested against two cysteine protease targets Rhodesain and TbCatB, where five compounds showed inhibition activity at concentrations less than 20microM. A preliminary activity pattern is described and analyzed.
Collapse
Affiliation(s)
- Katharine R. Watts
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Joseline Ratnam
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Kean-Hooi Ang
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Jennifer E. Compton
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - James McKerrow
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
13
|
Johnson TA, Morgan MVC, Aratow NA, Estee SA, Sashidhara KV, Loveridge ST, Segraves NL, Crews P. Assessing pressurized liquid extraction for the high-throughput extraction of marine-sponge-derived natural products. JOURNAL OF NATURAL PRODUCTS 2010; 73:359-64. [PMID: 20030364 PMCID: PMC2846233 DOI: 10.1021/np900565a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In order to compare the utility of standard solvent partitioning (SSP) versus accelerated solvent extraction (ASE), a series of experiments were performed and evaluated. Overall yields, solvent consumption, processing time, and chemical stability of the fractions obtained by both methods were compared. Five marine sponges were selected for processing and analysis containing 12 structurally distinct, bioactive natural products. Extracts generated using SSP and ASE were assessed for chemical degradation using comparative LC MS-ELSD. The extraction efficiency (EE) of the ASE apparatus was 3 times greater than the SSP method on average, while the total extraction yields (TEY) were roughly equivalent. Furthermore, the ASE methodology required only 2 h to process each sample versus 80 h for SSP, and the LC MS-ELSD from extracts of both methods appeared comparable. These results demonstrate that ASE can serve as an effective high-throughput methodology for extracting marine organisms to streamline the discovery of novel and bioactive natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Phillip Crews
- To whom correspondence should be addressed. Tel.: 831-459-2603. Fax: 831-459-2935.
| |
Collapse
|
14
|
|
15
|
|