1
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
2
|
Baussière F, Haugland MM. Radical Group Transfer of Vinyl and Alkynyl Silanes Driven by Photoredox Catalysis. J Org Chem 2023; 88:12451-12463. [PMID: 37581630 PMCID: PMC10476183 DOI: 10.1021/acs.joc.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/16/2023]
Abstract
Radical group transfer is a powerful tool for the formation of C-C bonds. These processes typically involve radical addition to C-C π bonds, followed by fragmentation of the resulting cyclic intermediate. Despite the advantageous lability of organosilanes in this context, silicon-tethered radical acceptor groups have remained underexplored in radical group transfer reactions. We report a general photoredox-catalyzed protocol for the radical group transfer of vinyl and alkynyl silanes onto sp3 carbons, using activated and unactivated iodides as radical precursors. Our method displays high diastereoselectivity and excellent functional group tolerance, and enables direct formation of group transfer products by in situ ring opening. Mechanistic investigations revealed that the reaction proceeds via an unusual dual catalytic cycle, resulting in an overall redox-neutral process.
Collapse
Affiliation(s)
- Floriane Baussière
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Marius M. Haugland
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Presenti P, Moiola M, Quadrelli P. 5‐Hydroxy‐isoxazolidine: A New Synthetic Approach to a Privileged Heterocycle for Organic Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202001337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piero Presenti
- Department of ChemistryUniversity of Pavia Viale taramelli 12 27100 – Pavia Italy
| | - Mattia Moiola
- Department of ChemistryUniversity of Pavia Viale taramelli 12 27100 – Pavia Italy
| | - Paolo Quadrelli
- Department of ChemistryUniversity of Pavia Viale taramelli 12 27100 – Pavia Italy
| |
Collapse
|
4
|
Lussier T, Manchoju A, Wang G, Dostie S, Foster S, Mochirian P, Prévost M, Guindon Y. Diastereoselective Synthesis of Arabino- and Ribo-like Nucleoside Analogues Bearing a Stereogenic C3' All-Carbon Quaternary Center. J Org Chem 2019; 84:16055-16067. [PMID: 31729227 DOI: 10.1021/acs.joc.9b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis of novel nucleoside analogues bearing a C3' all-carbon quaternary center and a C2'-hydroxy substituent is described. The all-carbon stereogenic center was generated through an intramolecular 7-endo attack of a silyl-tethered allyl moiety on a tertiary radical using photoredox catalysis. Subsequent allylic oxidation and diastereoselective hydride reductions provided the hydroxy substituent at C2', which then controls the stereoselective introduction of pyrimidine nucleobases on the corresponding furanose scaffold. Density functional theory (DFT) calculations provided insights into the origin of the high syn diastereoselectivity resulting from the radical cyclization. This original methodology grants access to a wide range of 1',2'-cis and 1',2'-trans arabino- and ribo-like analogues bearing an all-carbon quaternary center at C3'. These molecules are currently being tested for their antiviral and anticancer properties.
Collapse
Affiliation(s)
- Tommy Lussier
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Amarender Manchoju
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Gang Wang
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Starr Dostie
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Scott Foster
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Philippe Mochirian
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Michel Prévost
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Yvan Guindon
- Bio-organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada.,Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
5
|
Becerril-Jiménez F, Lussier T, Leblanc L, Eymard C, Dostie S, Prévost M, Guindon Y. Photoredox-Catalyzed Stereoselective Radical Reactions to Synthesize Nucleoside Analogues with a C2'-Stereogenic All-Carbon Quaternary Center. J Org Chem 2019; 84:14795-14804. [PMID: 31638391 DOI: 10.1021/acs.joc.9b02374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of novel nucleoside analogues bearing a C2' all-carbon quaternary center is described. The construction of this all-carbon stereogenic center involves the use of photoredox catalysis to initiate an intramolecular attack of a silyl-tethered vinyl functionality on a tertiary radical. Density functional theory calculations were performed to explore the origin of the high syn diastereoselectivity obtained through the preferred 5-exo-trig cyclization mode. The intramolecular vinyl addition also enables the preparation of the complementary configuration of the C2' all-carbon stereocenter when performed after lactonization.
Collapse
Affiliation(s)
- Fabiola Becerril-Jiménez
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Tommy Lussier
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Louis Leblanc
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Carla Eymard
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| | - Starr Dostie
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Michel Prévost
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada
| | - Yvan Guindon
- Bio-Organic Chemistry Laboratory , Institut de Recherches Cliniques de Montréal , Montréal , Québec H2W 1R7 , Canada.,Department of Chemistry , Université de Montréal , Montréal , Québec H3C 3J7 , Canada.,Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
6
|
Maki SL, Maity P, Dougherty S, Johns J, Lepore SD. Allenoate Prenucleophiles: A Triply Diastereoselective Approach to β-Hydroxy Esters Containing All-Carbon α-Quaternary Centers. Org Lett 2019; 21:7952-7955. [PMID: 31524414 DOI: 10.1021/acs.orglett.9b02930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allenyl esters activated by titanium(IV) underwent additions to a wide range of aldehydes in high regio- and diastereoselectivities leading to products containing an all-carbon quaternary center bearing an α-vinyl group that was installed with high selectivity for the Z-geometry. An aldol product was also converted to an indanone offering a new route to this important compound class. Product triple diastereoselectivity has been rationalized using a concerted transition-state model.
Collapse
Affiliation(s)
- Samantha L Maki
- Department of Chemistry and Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431-0991 , United States
| | - Pradip Maity
- Organic Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , India
| | - Shannon Dougherty
- Department of Chemistry and Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431-0991 , United States
| | - Jennifer Johns
- Department of Chemistry and Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431-0991 , United States
| | - Salvatore D Lepore
- Department of Chemistry and Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431-0991 , United States
| |
Collapse
|
7
|
Zuo YJ, Zhong Z, Fan Y, Li X, Chen X, Chang Y, Song R, Fu X, Zhang A, Zhong CM. Copper-catalyzed diastereoselective synthesis of β-boryl-α-quaternary carbon carboxylic esters. Org Biomol Chem 2018; 16:9237-9242. [PMID: 30475365 DOI: 10.1039/c8ob02469c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(i)-Catalyzed diastereoselective carboboration of α-alkyl-substituted α,β-unsaturated carboxylic esters to produce β-boryl-α-quaternary carbon esters was developed. The carbon skeletons of dialkyl sulfates, primary allyl halides, and benzyl bromides were transferred to the α-position of the substrates to provide products in moderate to good yields with a diastereoselectivity of >95% in most cases. Substrates bearing a β-(hetero)aryl substituent gave higher diastereoselectivities than those bearing a linear β-alkyl substituent. The crystal structure of the potassium trifluoroborate derivative shows that the reactions probably go through a copper(i) enolate intermediate and the diastereoselectivity arises from the electrophilic attack of electrophiles to the less hindered side of the enolates.
Collapse
Affiliation(s)
- Ya-Jie Zuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tambutet G, Becerril-Jiménez F, Dostie S, Simard R, Prévost M, Mochirian P, Guindon Y. Dual-Face Nucleoside Scaffold Featuring a Stereogenic All-Carbon Quaternary Center. Intramolecular Silicon Tethered Group-Transfer Reaction. Org Lett 2014; 16:5698-701. [DOI: 10.1021/ol502777r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Tambutet
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Département
de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Fabiola Becerril-Jiménez
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Starr Dostie
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | - Ryan Simard
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Michel Prévost
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Philippe Mochirian
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Yvan Guindon
- Bio-Organic
Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Département
de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
9
|
Stereoselective formation of tertiary and quaternary carbon centers via inverse conjugate addition of carbonucleophiles to allenic esters. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|