1
|
Tsui BTH, Sung MMH, Kinas J, Hahn FE, Morris RH. A Ruthenium Protic N-Heterocyclic Carbene Complex as a Precatalyst for the Efficient Transfer Hydrogenation of Aryl Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian T. H. Tsui
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Molly M. H. Sung
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Gong H, Cui T, Liu Z, Zheng Y, Zheng X, Fu H, Yuan M, Chen H, Xu J, Li R. Nitrogen–nitrogen-functionalized N-heterocyclic carbene ruthenium( ii) complexes realized efficient CO 2 hydrogenation to formate. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new Ru–CNN complexes are synthesized for the hydrogenation of CO2 to formate. The Ru–CNN complex exhibits a long lifetime of over 400 h at 170 °C with a high TON of 6.5 × 105.
Collapse
Affiliation(s)
- Huihua Gong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tianhua Cui
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yanling Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hua Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Darawsheh MD, Mazarío J, Lopes CW, Giménez-Marqués M, Domine ME, Meira DM, Martínez J, Mínguez Espallargas G, Oña-Burgos P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis*. Chemistry 2020; 26:13659-13667. [PMID: 32521073 DOI: 10.1002/chem.202001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst.
Collapse
Affiliation(s)
- Mohanad D Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Christian W Lopes
- Laboratory of Reactivity and Catalysis-Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501970, Porto Alegre, Brazil
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Marcelo E Domine
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Debora M Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Jordan Martínez
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain.,Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería, 04120, Spain
| |
Collapse
|
5
|
Tuttle RR, Folkman SJ, Rubin HN, Finke RG, Reynolds MM. Copper Metal-Organic Framework Surface Catalysis: Catalyst Poisoning, IR Spectroscopic, and Kinetic Evidence Addressing the Nature and Number of the Catalytically Active Sites En Route to Improved Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39043-39055. [PMID: 32805891 DOI: 10.1021/acsami.0c08961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal-organic framework (MOF) H3[(Cu4Cl)3-(BTTri)8, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene] (CuBTTri) is a precatalyst for biomedically relevant nitric oxide (NO) release from S-nitrosoglutathione (GSNO). The questions of the number and nature of the catalytically most active, kinetically dominant sites are addressed. Also addressed is whether or not the well-defined structural geometry of MOFs (as solid-state analogues of molecular compounds) can be used to generate specific, testable hypotheses about, for example, if intrapore vs exterior surface metal sites are more catalytically active. Studies of the initial catalytic rate vs CuBTTri particle external surface area to interior volume ratio show that intrapore copper sites are inactive within the experimental error (≤1.7 × 10-5% of the observed catalytic activity)-restated, the traditional MOF intrapore metal site catalysis hypothesis is disproven for the current system. All observed catalysis occurs at exterior surface Cu sites, within the experimental error. Fourier transform infrared (FT-IR) analysis of CN--poisoned CuBTTri reveals just two detectable Cu sites at a ca. ≥0.5% detection limit, those that bind three or one CN- ("Cu(CN)3" and "CuCN"), corresponding to the CN- binding expected for exterior surface, 3-coordinate (Cusurface) and intrapore, 5-coordinate (Cupore) sites predicted by the idealized, metal-terminated crystal structure. Two-coordinate Cu defect sites are ruled out at the ≥0.5% FT-IR detection limit as such defect sites would have been detectable by the FT-IR studies of the CN--poisoned catalyst. Size-selective poisoning studies of CuBTTri exterior surface sites reveal that 1.3 (±0.4)% of total copper in 0.6 ± 0.4 μm particles is active. That counting of active sites yields a normalized turnover frequency (TOF), TOFnorm = (4.9 ± 1.2) × 10-2 mol NO (mol Cusurface)-1 s-1 (in water, at 20 min, 25 °C, 1 mM GSNO, 30% loss of GSNO, and 1.3 ± 0.4 mol % Cusurface)-a value ∼100× higher than the TOF calculated without active site counting. Overall, Ockham's razor interpretation of the data is that exterior surface, Cusurface sites are the catalytically most active sites present at a 1.3 (±0.4)% level of total Cu.
Collapse
Affiliation(s)
- Robert R Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Scott J Folkman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Heather N Rubin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron 2020; 182. [PMID: 32410767 DOI: 10.1016/j.poly.2020.114508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report iridium catalysts IrCl(η5-Cp*)(κ2-(2-pyridyl)CH2NSO2C6H4X) (1-Me, X = CH3 and 1-F, X = F) for transfer hydrogenation of ketones with 2-propanol that operate by a previously unseen metal-ligand cooperative mechanism. Under the reaction conditions, complexes 1 (1-Me and 1-F) derivatize to a series of catalytic intermediates: Ir(η5-Cp*)(κ2-(C5H4N)CHNSO2Ar) (2), IrH(η5Cp*)(κ2-(2-pyridyl)CH2NSO2Ar) (3), and Ir(η5-Cp*)(κ3-(2-pyridyl)CH2NSO2Ar) (4). The structures of 1-Me and 4-Me were established by single-crystal X-ray diffraction. A rate-determining, concerted hydrogen transfer step (2 + R2CHOH ⇄ 3 + R2CO) is suggested by kinetic isotope effects, Eyring parameters (ΔH ≠ = 29.1(8) kcal mol-1 and ΔS ≠ = -17(19) eu), proton-hydride fidelity, and DFT calculations. According to DFT, a nine-membered cyclic transition state is stabilized by an alcohol molecule that serves as a proton shuttle.
Collapse
Affiliation(s)
- Ivan Demianets
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Valeriy Cherepakhin
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Alexander Maertens
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Paul J Lauridsen
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Shaama Mallikarjun Sharada
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, United States
| | - Travis J Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| |
Collapse
|
7
|
Chatterjee B, Kalsi D, Kaithal A, Bordet A, Leitner W, Gunanathan C. One-pot dual catalysis for the hydrogenation of heteroarenes and arenes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00928h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic system resulting from a monohydrido bridged ruthenium complex hydrogenated both heteroarenes and arenes, exhibited dual catalysis and provided access to valuable saturated heterocycles and cycloalkanes.
Collapse
Affiliation(s)
- Basujit Chatterjee
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Akash Kaithal
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Chidambaram Gunanathan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| |
Collapse
|
8
|
Abdel-Magied AF, Theibich Y, Singh AK, Rahaman A, Doverbratt I, Raha AK, Haukka M, Richmond MG, Nordlander E. Asymmetric hydrogenation of an α-unsaturated carboxylic acid catalyzed by intact chiral transition metal carbonyl clusters – diastereomeric control of enantioselectivity. Dalton Trans 2020; 49:4244-4256. [DOI: 10.1039/c9dt04799a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric hydrogenation catalysis by [(μ-H)2Ru3(μ3-S)(CO)7(μ-P–P*)] (P–P* = chiral diphosphine) indicates intact chiral clusters as active catalysts.
Collapse
Affiliation(s)
| | - Yusuf Theibich
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | | | - Ahibur Rahaman
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Isa Doverbratt
- Centre for Analysis and Synthesis
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Arun K. Raha
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | | | - Ebbe Nordlander
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| |
Collapse
|
9
|
Nielsen MT, Padilla R, Nielsen M. Homogeneous Catalysis by Organometallic Polynuclear Clusters. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Finney EE, Finke RG. Catalyst Sintering Kinetics Data: Is There a Minimal Chemical Mechanism Underlying Kinetics Previously Fit by Empirical Power-Law Expressions—and if So, What Are Its Implications? Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric E. Finney
- Department
of Chemistry, Pacific Lutheran University, Tacoma, Washington 98447, United States
| | - Richard G. Finke
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Tang N, Cong Y, Shang Q, Wu C, Xu G, Wang X. Coordinatively Unsaturated Al3+ Sites Anchored Subnanometric Ruthenium Catalyst for Hydrogenation of Aromatics. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01816] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nanfang Tang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Cong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qinghao Shang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuntian Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guoliang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaodong Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Catalytic Hydrogenation of Arenes in Water Over In Situ Generated Ruthenium Nanoparticles Immobilized on Carbon. ChemCatChem 2017. [DOI: 10.1002/cctc.201700056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Denicourt-Nowicki A, Roucoux A. Odyssey in Polyphasic Catalysis by Metal Nanoparticles. CHEM REC 2016; 16:2127-41. [DOI: 10.1002/tcr.201600050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Alain Roucoux
- ENSCR, UMR, CNRS 6226; 11 Allée de Beaulieu, CS 50837 35708 Rennes Cedex 7 France
| |
Collapse
|
14
|
|
15
|
A prolific catalyst for dehydrogenation of neat formic acid. Nat Commun 2016; 7:11308. [PMID: 27076111 PMCID: PMC4834634 DOI: 10.1038/ncomms11308] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments.
Collapse
|
16
|
Chacón G, Durand J, Favier I, Teuma E, Gomez M. Ionic liquids in catalysis: molecular and nanometric metal systems. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2016. [DOI: 10.17721/fujcv4i1p23-36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The catalyst immobilization in a liquid phase represents an attractive means to preserve high activities and selectivities, also permitting an easy recycling. To attain this goal, organic products should be extracted in a simple way from the catalytic phase leading to metal-free target compounds; for this reason, ionic liquids exhibiting high affinity for metallic species and low affinity for low polar compounds, turn into a promising medium, in particular for the synthesis of fine chemicals. In the present Accounts, we illustrate this approach through our research involving both molecular organometallic compounds and metallic nanoparticles dispersed in an ionic liquid phase.
Collapse
|
17
|
Hitrik M, Dandapat A, Sasson Y. A new mechanism for allylic alcohol isomerization involving ruthenium nanoparticles as a ‘true catalyst’ generated through the self-assembly of supramolecular triruthenium clusters. RSC Adv 2016. [DOI: 10.1039/c6ra14658a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new five step mechanism has been established for allylic alcohol isomerization involving ruthenium nanoparticles as the ‘true catalyst’.
Collapse
Affiliation(s)
- Maria Hitrik
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Anirban Dandapat
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Yoel Sasson
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
18
|
Zhang X, Lu Z, Foellmer LK, Williams TJ. Nitrogen-Based Ligands Accelerate Ammonia Borane Dehydrogenation with the Shvo Catalyst. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingyue Zhang
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Zhiyao Lu
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Lena K. Foellmer
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Travis J. Williams
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
19
|
From hydroxycetylammonium salts to their chiral counterparts. A library of efficient stabilizers of Rh(0) nanoparticles for catalytic hydrogenation in water. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Dreier TA, Wong OA, Ackerson CJ. Oxidative decomposition of Au25(SR)18 clusters in a catalytic context. Chem Commun (Camb) 2015; 51:1240-3. [PMID: 25472705 DOI: 10.1039/c4cc07832b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gold nanoparticle catalysis of chemical transformations has emerged as a subject of intense interest over the past decade. In particular, Au25(SR)18 has emerged as a model catalyst. In an effort to investigate their potential as intact, homogeneous, unsupported catalysts, we have discovered that Au25(SR)18 clusters are not stable in oxidizing conditions reported for catalytic styrene oxidation. Further investigation suggests that the active catalytic species is an Au(I) species resulting from oxidative decomposition of the starting gold cluster. This conclusion appears independent of R-group on thiolate-ligated Au25(SR)18 clusters.
Collapse
Affiliation(s)
- Timothy A Dreier
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
21
|
Vanston CR, Kearley GJ, Edwards AJ, Darwish TA, de Souza NR, Ramirez-Cuesta AJ, Gardiner MG. The free-energy barrier to hydride transfer across a dipalladium complex. Faraday Discuss 2015; 177:99-109. [DOI: 10.1039/c4fd00182f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd–Pd–H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)2CH2}2Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol−1 with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model for the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.
Collapse
Affiliation(s)
- C. R. Vanston
- School of Physical Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia. E-mail:
| | - G. J. Kearley
- Bragg Institute
- Australian Nuclear Science and Technology Organization
- Kirrawee DC
- Australia
| | - A. J. Edwards
- Bragg Institute
- Australian Nuclear Science and Technology Organization
- Kirrawee DC
- Australia
| | - T. A. Darwish
- Bragg Institute
- Australian Nuclear Science and Technology Organization
- Kirrawee DC
- Australia
| | - N. R. de Souza
- Bragg Institute
- Australian Nuclear Science and Technology Organization
- Kirrawee DC
- Australia
| | - A. J. Ramirez-Cuesta
- Oakridge National Laboratory-Chemical and Engineering Materials Division
- Oakridge
- USA
| | - M. G. Gardiner
- School of Physical Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia. E-mail:
| |
Collapse
|
22
|
Someya CI, Irran E, Enthaler S. Synthesis of Ni(II) complexes with unsymmetric [O,N,O′]-pincer ligands and their use as precatalysts in carbon–carbon bond formations to access diarylmethanes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Abdel-Magied AF, Singh AK, Haukka M, Richmond MG, Nordlander E. Diastereomeric control of enantioselectivity: evidence for metal cluster catalysis. Chem Commun (Camb) 2014; 50:7705-8. [PMID: 24901302 DOI: 10.1039/c4cc02319f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective hydrogenation of tiglic acid effected by diastereomers of the general formula [(μ-H)2Ru3(μ3-S)(CO)7(μ-P-P*)] (P-P* = chiral Walphos diphosphine ligand) strongly supports catalysis by intact Ru3 clusters. A catalytic mechanism involving Ru3 clusters has been established by DFT calculations.
Collapse
Affiliation(s)
- Ahmed F Abdel-Magied
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, Lund, SE-221 00, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Rossin A, Rossi A, Peruzzini M, Zanobini F. Chemical Hydrogen Storage: Ammonia Borane Dehydrogenation Catalyzed by NP3Ruthenium Hydrides (NP3=N(CH2CH2PPh2)3). Chempluschem 2014. [DOI: 10.1002/cplu.201402108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Crochet P, Cadierno V. Arene-ruthenium(ii) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media. Dalton Trans 2014; 43:12447-62. [DOI: 10.1039/c4dt01494d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Süss-Fink G. Water-soluble arene ruthenium complexes: From serendipity to catalysis and drug design. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.07.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Johnpeter JP, Plasseraud L, Schmitt F, Juillerat-Jeanneret L, Therrien B. Catalytic and anticancer activities of sawhorse-type diruthenium tetracarbonyl complexes derived from fluorinated fatty acids. J COORD CHEM 2013. [DOI: 10.1080/00958972.2013.790020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Laurent Plasseraud
- b Institut de Chimie Moléculaire de l’Université de Bourgogne , UMR CNRS 6302 , Dijon Cedex , France
| | - Frédéric Schmitt
- c Institut Universitaire de Pathologie , CHUV , Lausanne , Switzerland
| | | | - Bruno Therrien
- a Institut de Chimie , Université de Neuchâtel , Neuchâtel , Switzerland
| |
Collapse
|
28
|
Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. Binuclear Cooperative Catalysts for the Hydrogenation and Hydroformylation of Olefins. ChemCatChem 2013. [DOI: 10.1002/cctc.201300092] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
He J, Zhang Y, Chen EYX. Chromium(0) nanoparticles as effective catalyst for the conversion of glucose into 5-hydroxymethylfurfural. CHEMSUSCHEM 2013; 6:61-64. [PMID: 23225757 DOI: 10.1002/cssc.201200795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Indexed: 06/01/2023]
Abstract
It's nano: Small and uniform chromium nanoparticles, either preformed or generated in situ, effectively catalyze the conversion of glucose into 5-hydroxymethyl furfural. The results compare favorably with those achieved by using a catalyst system based on divalent CrCl(2) in ionic liquids (ILs). In addition, the chromium nanoparticles are found in the CrCl(2)/IL system, and the implications of their presence in that system is investigated.
Collapse
Affiliation(s)
- Jianghua He
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | | | | |
Collapse
|
30
|
Indra A, Maity P, Bhaduri S, Lahiri GK. Chemoselective Hydrogenation and Transfer Hydrogenation of Olefins and Carbonyls with the Cluster-Derived Ruthenium Nanocatalyst in Water. ChemCatChem 2012. [DOI: 10.1002/cctc.201200448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Moberg V, Duquesne R, Contaldi S, Röhrs O, Nachtigall J, Damoense L, Hutton AT, Green M, Monari M, Santelia D, Haukka M, Nordlander E. Efficient cluster-based catalysts for asymmetric hydrogenation of α-unsaturated carboxylic acids. Chemistry 2012; 18:12458-78. [PMID: 22890820 DOI: 10.1002/chem.201200630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Indexed: 11/10/2022]
Abstract
The new clusters [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)], [H(4)Ru(4)(CO)(10) (1,1-P-P)] and [H(4)Ru(4)(CO)(11)(P-P)] (P-P=chiral diphosphine of the ferrocene-based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal-metal bond of the ruthenium tetrahedron in the "conventional" manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H(4)Ru(4)(CO)(10)(1,1-Walphos)] clusters isomerise to the corresponding [H(4)Ru(4)(CO)(10)(μ-1,2-Walphos)] clusters, whereas the Josiphos-containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α-unsaturated carboxylic acids and the prochiral methyl ester (E)-methyl 2-methylbut-2-enoate. High conversion rates (>94%) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos-containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99-100%), product selectivities (99-100% in most cases) and good enantioselectivities, reaching 90% enantiomeric excess (ee) in certain cases, were observed for the Walphos-containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high-pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H(4)Ru(4)(CO)(10)(μ-1,2-P-P)] clusters (P-P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P-P)(carboxylato)(2)] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.
Collapse
Affiliation(s)
- Viktor Moberg
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu Z, Conley BL, Williams TJ. A Three-Stage Mechanistic Model for Ammonia Borane Dehydrogenation by Shvo's Catalyst. Organometallics 2012; 31:6705-6714. [PMID: 23335832 DOI: 10.1021/om300562d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a mechanistic model for three-stage dehydrogenation of ammonia borane (AB) catalyzed by Shvo's cyclopentadienone-ligated ruthenium complex. We provide evidence for a plausible mechanism for catalyst deactivation, the transition from fast catalysis to slow catalysis, and relate those findings to the invention of a second-generation catalyst that does not suffer from the same deactivation chemistry.The primary mechanism of catalyst deactivation is borazine-mediated hydroboration of the ruthenium species that is the active oxidant in the fast catalysis case. This transition is characterized by a change in the rate law for the reaction and changes in the apparent resting state of the catalyst. Also, in this slow catalysis situation, we see an additional intermediate in the sequence of boron, nitrogen species, aminodiborane. This occurs with concurrent generation of NH(3), which itself does not strongly affect the rate of AB dehydrogenation.
Collapse
Affiliation(s)
- Zhiyao Lu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661
| | | | | |
Collapse
|
33
|
Mikhailine AA, Maishan MI, Lough AJ, Morris RH. The mechanism of efficient asymmetric transfer hydrogenation of acetophenone using an iron(II) complex containing an (S,S)-Ph2PCH2CH═NCHPhCHPhN═CHCH2PPh2 ligand: partial ligand reduction is the key. J Am Chem Soc 2012; 134:12266-80. [PMID: 22793266 DOI: 10.1021/ja304814s] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
On the basis of a kinetic study and other evidence, we propose a mechanism of activation and operation of a highly active system generated from the precatalyst trans-[Fe(CO)(Br)(Ph(2)PCH(2)CH═N-((S,S)-C(Ph)H-C(Ph)H)-N═CHCH(2)PPh(2))][BPh(4)] (2) for the asymmetric transfer hydrogenation of acetophenone in basic isopropanol. An induction period for catalyst activation is observed before the catalytic production of 1-phenethanol. The activation step is proposed to involve a rapid reaction of 2 with excess base to give an ene-amido complex [Fe(CO)(Ph(2)PCH(2)CH═N-((S,S)-C(Ph)H-C(Ph)H)-NCH═CHPPh(2))](+) (Fe(p)) and a bis(enamido) complex Fe(CO)(Ph(2)PCH═CH-N-(S,S-CH(Ph)CH(Ph))-N-CH═CHPPh(2)) (5); 5 was partially characterized. The slow step in the catalyst activation is thought to be the reaction of Fe(p) with isopropoxide to give the catalytically active amido-(ene-amido) complex Fe(a) with a half-reduced, deprotonated PNNP ligand. This can be trapped by reaction with HCl in ether to give, after isolation with NaBPh(4), [Fe(CO)(Cl)(Ph(2)PCH(2)CH(2)N(H)-((S,S)-CH(Ph)CH(Ph))-N═CHCH(2)PPh(2))][BPh(4)] (7) which was characterized using multinuclear NMR and high-resolution mass spectrometry. When compound 7 is treated with base, it directly enters the catalytic cycle with no induction period. A precatalyst with the fully reduced P-NH-NH-P ligand was prepared and characterized by single crystal X-ray diffraction. It was found to be much less active than 2 or 7. Reaction profiles obtained by varying the initial concentrations of acetophenone, precatalyst, base, and acetone and by varying the temperature were fit to the kinetic model corresponding to the proposed mechanism by numerical simulation to obtain a unique set of rate constants and thermodynamic parameters.
Collapse
Affiliation(s)
- Alexandre A Mikhailine
- Davenport Laboratory, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
34
|
Bilé EG, Cortelazzo-Polisini E, Denicourt-Nowicki A, Sassine R, Launay F, Roucoux A. Chiral ammonium-capped rhodium(0) nanocatalysts: synthesis, characterization, and advances in asymmetric hydrogenation in neat water. CHEMSUSCHEM 2012; 5:91-101. [PMID: 22250136 DOI: 10.1002/cssc.201100364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optically active amphiphilic compounds derived from N-methylephedrine, N-methylprolinol, or cinchona derivatives possessing bromide or chiral lactate counterions were efficiently used as protective agents for rhodium(0) nanoparticles. The full characterization of these surfactants and the obtained nanocatalysts was performed by means of different techniques. These spherical nanoparticles, with sizes between 0.8-2.5 nm depending on the stabilizer, were evaluated in the hydrogenation of model substrates in neat water as a green solvent. The rhodium catalysts showed relevant kinetic properties, but modest enantiomeric excess values of up to 13 % in the hydrogenation of ethyl pyruvate. They were also investigated in the hydrogenation of disubstituted arenes, such as m-methylanisole, providing interesting catalytic activities and a preferential cis selectivity of around 80 %; however, no asymmetric induction was observed.
Collapse
|
35
|
Dabbawala AA, Bajaj HC, Bricout H, Monflier E. Aqueous biphasic hydrogenation of benzene catalyzed by ruthenium complex of trisulfonated tris(biphenyl)phosphine. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20172k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Al-Ibadi MAM, Duckett SB, McGrady JE. Characterisation of tri-ruthenium dihydride complexes through the computation of NMR parameters. Dalton Trans 2012; 41:4618-25. [DOI: 10.1039/c2dt12057g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis. J Am Chem Soc 2011; 133:18889-902. [PMID: 22035197 DOI: 10.1021/ja2073438] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, and then crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a "wholly kinetic phenomenon" as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in the present case subnanometer Rh(4) cluster-based catalysis, from larger, polymetallic Rh(0)(n) nanoparticle catalysis, at least under favorable conditions. The combined in operando X-ray absorption fine structure (XAFS) spectroscopy and kinetic evidence provide a compelling case for Rh(4)-based, with average stoichiometry "Rh(4)Cp*(2.4)Cl(4)H(c)", benzene hydrogenation catalysis in 2-propanol with added Et(3)N and at 100 °C and 50 atm initial H(2) pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)(n) had formed nanoparticles, then those Rh(0)(n) nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)(n) nanoparticles as a model system). The results--especially the poisoning methodology developed and employed--are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions. The results are also of fundamental interest in that they add to a growing body of evidence indicating that certain, appropriately ligated, coordinatively unsaturated, subnanometer M(4) transition-metal clusters can be relatively robust catalysts. Also demonstrated herein is that Rh(4) clusters are poisoned by Hg(0), demonstrating for the first time that the classic Hg(0) poisoning test of "homogeneous" vs "heterogeneous" catalysts cannot distinguish Rh(4)-based subnanometer catalysts from Rh(0)(n) nanoparticle catalysts, at least for the present examples of these two specific, Rh-based catalysts.
Collapse
|
38
|
Crabtree RH. Resolving Heterogeneity Problems and Impurity Artifacts in Operationally Homogeneous Transition Metal Catalysts. Chem Rev 2011; 112:1536-54. [DOI: 10.1021/cr2002905] [Citation(s) in RCA: 523] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Robert H. Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
39
|
Yao ZJ, Su G, Jin GX. Versatile Reactivity of Half-Sandwich Ir and Rh Complexes toward Carboranylamidinates and Their Derivatives: Synthesis, Structure, and Catalytic Activity for Norbornene Polymerization. Chemistry 2011; 17:13298-307. [DOI: 10.1002/chem.201101638] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/21/2011] [Indexed: 11/09/2022]
|
40
|
Chaplin AB, Dyson PJ. Influence of arene dissociation and phosphine coordination on the catalytic activity of [RuCl(κ2-triphos)(p-cymene)]PF6. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Alley WM, Hamdemir IK, Wang Q, Frenkel AI, Li L, Yang JC, Menard LD, Nuzzo RG, Özkar S, Yih KH, Johnson KA, Finke RG. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6279-6294. [PMID: 21480617 DOI: 10.1021/la200053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for ∼50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after catalyst synthesis, and whether the species primarily responsible for catalytic hydrogenation activity are homogeneous (e.g., monometallic complexes) or heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination of Ziegler-type hydrogenation catalyst precursors). A critical review of the existing literature (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) and a recently published study using an Ir model system (Alley et al. Inorg. Chem. 2010, 49, 8131-8147) help to guide the present investigation of Ziegler-type hydrogenation catalysts made from the industrially favored precursors Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2), plus AlEt(3). The approach and methods used herein parallel those used in the study of the Ir model system. Specifically, a combination of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy are used to characterize the transition metal species both before and after hydrogenation. Kinetic studies including Hg(0) poisoning experiments are utilized to test which species are the most active catalysts. The main findings are that, both before and after catalytic cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of about 1 nm for both Co and Ni. The XAFS results also imply that the catalyst solutions are a mixture of the metal clusters described above, plus unreduced metal ions. The kinetics-based Hg(0) poisoning evidence suggests that Co and Ni Ziegler nanoclusters (i.e., M(≥4)) are the most active Ziegler-type hydrogenation catalysts in these industrial systems. Overall, the novelty and primary conclusions of this study are as follows: (i) this study examines Co- and Ni-based catalysts made from the actual industrial precursor materials, catalysts that are notoriously problematic regarding their characterization; (ii) the Z-contrast STEM results reported herein represent, to our knowledge, the best microscopic analysis of the industrial Co and Ni Ziegler-type hydrogenation catalysts; (iii) this study is the first explicit application of an established method, using multiple analytical methods and kinetics-based studies, for distinguishing homogeneous from heterogeneous catalysis in these Ziegler-type systems; and (iv) this study parallels the successful study of an Ir model Ziegler catalyst system, thereby benefiting from a comparison to those previously unavailable findings, although the greater M-M bond energy, and tendency to agglomerate, of Ir versus Ni or Co are important differences to be noted. Overall, the main result of this work is that it provides the leading hypothesis going forward to try to refute in future work, namely, that sub, M(≥4) to larger, M(n) Ziegler nanoclusters are the dominant, industrial, Co- and Ni- plus AlR(3) catalysts in Ziegler-type hydrogenation systems.
Collapse
Affiliation(s)
- William M Alley
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Salas G, Santini CC, Philippot K, Collière V, Chaudret B, Fenet B, Fazzini PF. Influence of amines on the size control of in situ synthesized ruthenium nanoparticles in imidazolium ionic liquids. Dalton Trans 2011; 40:4660-8. [DOI: 10.1039/c0dt00596g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Sameera WMC, McKenzie CJ, McGrady JE. On the mechanism of water oxidation by a bimetallic manganese catalyst: A density functional study. Dalton Trans 2011; 40:3859-70. [DOI: 10.1039/c0dt01362e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Vangelis C, Bouriazos A, Sotiriou S, Samorski M, Gutsche B, Papadogianakis G. Catalytic conversions in green aqueous media: Highly efficient biphasic hydrogenation of benzene to cyclohexane catalyzed by Rh/TPPTS complexes. J Catal 2010. [DOI: 10.1016/j.jcat.2010.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Alley WM, Hamdemir IK, Wang Q, Frenkel AI, Li L, Yang JC, Menard LD, Nuzzo RG, Özkar S, Johnson KA, Finke RG. Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)Ir(μ-O2C8H15)]2 and AlEt3: Spectroscopic and Kinetic Evidence for the Irn Species Present and for Nanoparticles as the Fastest Catalyst. Inorg Chem 2010; 49:8131-47. [DOI: 10.1021/ic101237c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William M. Alley
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Isil K. Hamdemir
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Qi Wang
- Department of Physics, Yeshiva University, New York, New York 10016
| | | | - Long Li
- University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Judith C. Yang
- University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - Saim Özkar
- Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey
| | | | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
46
|
Yanagi T, Suzuki H. Rational Construction of Oligomeric Polymetallic Ensembles Consisting of Ru2H4 Subunits Interconnected by Flexible Carbon Chains. Organometallics 2010. [DOI: 10.1021/om100206a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takako Yanagi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroharu Suzuki
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
47
|
Hogarth G, Kabir SE, Nordlander E. Cluster chemistry in the Noughties: new developments and their relationship to nanoparticles. Dalton Trans 2010; 39:6153-74. [DOI: 10.1039/c000514b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Gual A, Godard C, Castillón S, Claver C. Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes. Dalton Trans 2010; 39:11499-512. [DOI: 10.1039/c0dt00584c] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Huo XK, Su G, Jin GX. Neutral and zwitterionic half-sandwich Ir, Rh complexes supported by P,S-substituted o-carboranyl ligands: Synthesis, characterization and reactivity. Dalton Trans 2010; 39:1954-61. [DOI: 10.1039/b918272a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Demel J, Sujandi, Park SE, Čejka J, Štěpnička P. Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the Heck reaction. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcata.2008.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|