1
|
Mele A, Arrigoni F, Elleouet C, Pétillon FY, Schollhammer P, Zampella G. Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases. Molecules 2022; 27:molecules27154700. [PMID: 35897863 PMCID: PMC9369626 DOI: 10.3390/molecules27154700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C{1H} NMR spectroscopies, elemental analyses, X-ray diffraction, and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a {Fe-H⋯H-S} interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction).
Collapse
Affiliation(s)
- Andrea Mele
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2, 20126 Milan, Italy
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - Catherine Elleouet
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - François Y. Pétillon
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
| | - Philippe Schollhammer
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2, 20126 Milan, Italy
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| |
Collapse
|
2
|
Natarajan M, Kumar N, Joshi M, Stein M, Kaur‐Ghumaan S. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. ChemistryOpen 2022; 11:e202100238. [PMID: 34981908 PMCID: PMC8734113 DOI: 10.1002/open.202100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Bio-inorganic complexes inspired by hydrogenase enzymes are designed to catalyze the hydrogen evolution reaction (HER). A series of new diiron hydrogenase mimic complexes with one or two terminal tris(4-methoxyphenyl)phosphine and different μ-bridging dithiolate ligands and show catalytic activity towards electrochemical proton reduction in the presence of weak and strong acids. A series of propane- and benzene-dithiolato-bridged complexes was synthesized, crystallized, and characterized by various spectroscopic techniques and quantum chemical calculations. Their electrochemical properties as well as the detailed reaction mechanisms of the HER are elucidated by density functional theory (DFT) methods. The nature of the μ-bridging dithiolate is critically controlling the reaction and performance of the HER of the complexes. In contrast, terminal phosphine ligands have no significant effects on redox activities and mechanism. Mono- or di-substituted propane-dithiolate complexes afford a sequential reduction (electrochemical; E) and protonation (chemical; C) mechanism (ECEC), while the μ-benzene dithiolate complexes follow a different reaction mechanism and are more efficient HER catalysts.
Collapse
Affiliation(s)
| | - Naveen Kumar
- Department of ChemistryUniversity of DelhiDelhi110007India
| | - Meenakshi Joshi
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Matthias Stein
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | | |
Collapse
|
3
|
Narayana BK, Keri RS, Hanumantharayudu ND, Budagumpi S. Metal‐Metal Interactions in Bi‐, Tri‐ and Multinuclear Fe, Ru and Os N‐Heterocyclic Carbene Complexes and their Catalytic Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brinda Kadur Narayana
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| |
Collapse
|
4
|
Yan L, Wang LH, Tian WJ, Liu XF, Li YL, Liu XH, Jiang ZQ. Diiron carbonyl complexes containing bridging 1,3-bis(diphenylphosphino)propane or monosubstituted tris(3-fluorophenyl)phosphine: synthesis, characterization, X-ray crystallography, and electrochemistry. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Ling-Hui Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Wen-Jing Tian
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Chen FY, Wang LH, Tian WJ, Liu XF, Li YL, Liu XH, Jiang ZQ. Synthesis, X-ray crystal structures, and electrochemistry of two diiron ethane-1,2-dithiolate complexes containing tris(4-trifluoromethylphenyl)phosphine or triethyl phosphite. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fei-Yan Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Ling-Hui Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Wen-Jing Tian
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Lü S, Qin CR, Ma HL, Ouyang JM, Li QL. Tertiary phosphine disubstituted diiron bis(monothiolate) carbonyls related to the active site of [FeFe]-H2ases: Preparation, protonation and electrochemical properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
8
|
Yan L, Yang J, Lü S, Liu XF, Li YL, Liu XH, Jiang ZQ. Phosphine-containing Diiron Propane-1,2-dithiolate Derivatives: Synthesis, Spectroscopy, X-ray Crystal Structures, and Electrochemistry. Catal Letters 2020. [DOI: 10.1007/s10562-020-03450-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Li H, Chai XC, Wang J, Li J, Yao CZ. Synthesis, characterization, and electrochemistry of diiron ethane-1,2-dithiolate complexes with monosubstituted ethyldiphenylphosphine or dicyclohexylphenylphosphine. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1756292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hui Li
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Xiao-Chuan Chai
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Jie Wang
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Jun Li
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| | - Chen-Zhong Yao
- Department of Applied Chemistry, Yuncheng University, Yuncheng, China
| |
Collapse
|
10
|
Yan L, Wang LH, Yang J, Liu XF, Li YL, Liu XH, Jiang ZQ. Diiron propane-1,2-dithiolate complexes with monosubstituted tris(3-chlorophenyl)phosphine or tris(4-trifluoromethylphenyl)phosphine: synthesis, characterization, crystal structures, and electrochemistry. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Ling-Hui Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
11
|
Abul-Futouh H, Daraosheh AQ, Windhager J, Görls H, Weigand W. Synthesis and characterization of [FeFe]-hydrogenase models mediated by a 1,2,4-trithiolane derivative: Insight into molecular structures and electrochemical characteristics. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Yan L, Hu MY, Mu C, Li A, Liu XF, Zhao PH, Li YL, Jiang ZQ, Wu HK. Synthesis, characterization, and electrochemistry of five diiron propane-1,3-dithiolate complexes with substituted phosphine ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1672048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Meng-Yuan Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Ao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Yan L, He J, Liu XF, Li YL, Jiang ZQ, Wu HK. Phosphine-substituted diiron 1,2-dithiolate complexes as the models for the active site of [FeFe]-hydrogenases. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1665648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Diiron butane-2,3-dithiolate complexes with monophosphine coligands: synthesis, characterization, and electrochemistry. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00355-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Lin HM, Mu C, Li A, Liu XF, Li YL, Jiang ZQ, Wu HK. Synthesis, characterization, and electrochemistry of phosphine-substituted diiron butane-1,2-dithiolate complexes. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1659248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hui-Min Lin
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Ao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Lin H, Li J, Mu C, Li A, Liu X, Zhao P, Li Y, Jiang Z, Wu H. Synthesis, characterization, and electrochemistry of monophosphine‐containing diiron propane‐1,2‐dithiolate complexes related to the active site of [FeFe]‐hydrogenases. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hui‐Min Lin
- School of Materials and Chemical EngineeringNingbo University of Technology Ningbo 315211 China
| | - Jian‐Rong Li
- School of Materials Science and EngineeringNorth University of China Taiyuan 030051 China
| | - Chao Mu
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 China
| | - Ao Li
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 China
| | - Xu‐Feng Liu
- School of Materials and Chemical EngineeringNingbo University of Technology Ningbo 315211 China
| | - Pei‐Hua Zhao
- School of Materials Science and EngineeringNorth University of China Taiyuan 030051 China
| | - Yu‐Long Li
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 China
| | - Zhong‐Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of EducationZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Hong‐Ke Wu
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
17
|
Borthakur B, Phukan AK. Can carbene decorated [FeFe]-hydrogenase model complexes catalytically produce dihydrogen? An insight from theory. Dalton Trans 2019; 48:11298-11307. [PMID: 31270518 DOI: 10.1039/c9dt01855g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic alkyl amino carbene (CAAC) anchored [FeFe]-hydrogenase model complex featuring rotated conformation at one of the iron centers are found to be promising candidate for effective production of dihydrogen. A stepwise comparison of the complete mechanism using the CAAC stabilized model complex [1]0 has been performed with that of an experimentally isolated one ([2]0). Interestingly, the reduction events involved in the catalytic cycles are found to be more favorable than those previously reported for a similar experimentally known system. Furthermore, the computed ΔpKa values indicate that the distal iron center with a vacant coordination site is more basic compared to the amino nitrogen atom of the azadithiolate bridge. We also made an attempt to determine the oxidation states of the iron centers for the intermediates involved in the catalytic cycles on the basis of the computed Mössbauer isomer shift and Mulliken spin density values.
Collapse
Affiliation(s)
- Bitupon Borthakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
18
|
Synthesis and characterization of diiron ethane-1,2-dithiolate complexes with tricyclohexylphosphine, methyl diphenylphosphinite, or tris(2-thienyl)phosphine coligands. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00339-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Borthakur B, Vargas A, Phukan AK. A Computational Study of Carbene Ligand Stabilization of Biomimetic Models of the Rotated H
red
State of [FeFe]‐Hydrogenase. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bitupon Borthakur
- Department of Chemical Sciences Tezpur University Napaam 784028 Assam India
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences University of Sussex Brighton BN1 9QJ Sussex United Kingdom
| | - Ashwini K. Phukan
- Department of Chemical Sciences Tezpur University Napaam 784028 Assam India
| |
Collapse
|
20
|
Song LC, Chen JS, Jia GJ, Wang YZ, Tan ZL, Wang YX. Synthetic and Structural Studies of [FeFe]-Hydrogenase Models Containing a Butterfly Fe/E (E = S, Se, or Te) Cluster Core. Electrocatalytic H2 Evolution Catalyzed by [(μ-SeCH2)(μ-CH2NCH2Ph)]Fe2(CO)6. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jin-Sen Chen
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Jun Jia
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Zhen Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng-Lei Tan
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Xiang Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Chen FY, He J, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK. Synthesis and characterization of five diiron ethanedithiolate complexes with acetate group and phosphine ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
He J, Gao F, Li YL, Liu XF, Wu H, Jiang ZQ, Wu HK. Synthesis, characterization and electrochemistry of diiron 1,2-dithiolate complexes with a trans-cinnamate ester. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1569641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Fan Gao
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Hao Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Zhong-Qing Jiang
- Key Laboratory of ATMMT Ministry of Education, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
23
|
Trautwein R, Abul-Futouh H, Görls H, Imhof W, Almazahreh LR, Weigand W. Sulphur–sulphur, sulphur–selenium, selenium–selenium and selenium–carbon bond activation using Fe3(CO)12: an unexpected formation of an Fe2(CO)6 complex containing a μ2,κ3-C,O,Se-ligand. NEW J CHEM 2019. [DOI: 10.1039/c9nj02642h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four diiron hexacarbonyl-complexes containing dithiolato (5), diselenolato (6), selenolato-thiolato (7) and μ2,κ3-C,O,Se-ligands (8), respectively have been prepared as [FeFe]-hydrogenase mimics.
Collapse
Affiliation(s)
- Ralf Trautwein
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Hassan Abul-Futouh
- Department of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Wolfgang Imhof
- Institut für Integrierte Naturwissenschaften
- Universität Koblenz-Landau
- D-56070 Koblenz
- Germany
| | | | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| |
Collapse
|
24
|
Song LC, Feng L, Guo YQ. Hydrophilic quaternary ammonium-group-containing [FeFe]H2ase models prepared by quaternization of the pyridyl N atoms in pyridylazadiphosphine- and pyridylmethylazadiphosphine-bridged diiron complexes with various electrophiles. Dalton Trans 2019; 48:1443-1453. [DOI: 10.1039/c8dt04211j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The first aromatic quaternary ammonium-group-containing [FeFe]H2ase models have been prepared and some of them found to be catalysts for H2 production under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Li Feng
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuan-Qiang Guo
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
25
|
Zhao Y, Yu X, Hu H, Hu X, Raje S, Angamuthu R, Tung CH, Wang W. Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Chen FY, He J, Yu XY, Wang Z, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fei-Yan Chen
- School of Materials and Chemical Engineering; Ningbo University of Technology; Ningbo 315211 China
| | - Jiao He
- College of Chemistry and Environmental Engineering; Sichuan University of Science and Engineering; Zigong 643000 China
| | - Xiao-Yong Yu
- School of Materials and Chemical Engineering; Ningbo University of Technology; Ningbo 315211 China
| | - Zheng Wang
- College of Chemistry and Environmental Engineering; Sichuan University of Science and Engineering; Zigong 643000 China
| | - Chao Mu
- College of Chemistry and Environmental Engineering; Sichuan University of Science and Engineering; Zigong 643000 China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering; Ningbo University of Technology; Ningbo 315211 China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering; Sichuan University of Science and Engineering; Zigong 643000 China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Hong-Ke Wu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 China
| |
Collapse
|
27
|
Lian M, He J, Yu XY, Mu C, Liu XF, Li YL, Jiang ZQ. Diiron ethanedithiolate complexes with acetate ester: Synthesis, characterization and electrochemical properties. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Lu DT, He J, Yu XY, Liu XF, Li YL, Jiang ZQ. Diiron ethanedithiolate complexes with pendant ferrocene: Synthesis, characterization and electrochemistry. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhang X, Ma X, Zhang T, Li B, Jiang S, Zhang G, Hai L, Wang J, Shao X. The influence of phosphine ligand substituted [2Fe2S] model complexes as electro-catalyst on proton reduction. RSC Adv 2018; 8:42262-42268. [PMID: 35558398 PMCID: PMC9092242 DOI: 10.1039/c8ra08016j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/24/2018] [Indexed: 12/25/2022] Open
Abstract
To probe the influence of phosphine ligand substitution on the well-known [2Fe2S] model, two new [FeFe]-hydrogenase model complexes with the phosphine ligands, PMe3 or P(CH3O)3, were synthesized, such as μ-(SCH(CH2CH3)CH2S)–Fe2(CO)5PMe31, and μ-(SCH(CH2CH3)CH2S)–Fe2(CO)5P(CH3O)32 Confirmation of structures was provided by FTIR, 1H NMR, 13C NMR, 31P NMR, elemental analyses and single-crystal X-ray analysis. The crystal structure of complex 2 shows that the P(CH3O)3 ligand has less steric effect on the coordination geometry of the Fe atom than the PMe3 ligand. In the presence of HOAc in CH3CN solution, the hydrogen evolution overpotentials of complexes 1 and 2 were 0.91 V and 0.81 V, respectively. Comparatively, complex 2 produces hydrogen at an overpotential of 0.1 V, lower than that for complex 1. A further electrocatalytic study showed the maximum charges for 1 and 2 were 31.3 mC and 56.3 mC at −2.30 V for 10 min, respectively. These studies showed that the complexes 1 and 2 have the ability, as novel electrocatalysts, for catalysis of hydrogen production, and complex 2 has better electrocatalytic ability than complex 1. To probe the influence of phosphine ligand substitution on the well-known [2Fe2S] model, two new [FeFe]-hydrogenase model complexes with the phosphine ligands, PMe3 or P(CH3O)3, were synthesized.![]()
Collapse
Affiliation(s)
- Xia Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Xiaoyuan Ma
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Guanghui Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Li Hai
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| |
Collapse
|
30
|
Zhao P, Yu XY, Liu XF, Li YL. Alkyldiphenylphosphine substituted diiron ethanedithiolate or toluenedithiolate complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
[FeFe]-Hydrogenase and its organic molecule mimics—Artificial and bioengineering application for hydrogenproduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Sheng YD, Yu XY, Liu XF, Li YL. 2-(Diphenylphosphino)benzaldehyde or isopropyldiphenylphosphine substituted diiron dithiolate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Niu SJ, Yu XY, Liu XF, Li YL. Tris(2-methoxyphenyl)phosphine substituted diiron ethanedithiolate complexes containing hydroxymethyl, methyl or ethyl groups. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
A comparative study of the electrochemical and proton-reduction behaviour of diphosphine-dithiolate complexes [M2(CO)4(μ-dppm){μ-S(CH2)
n
S}] (M = Fe, Ru; n = 2, 3). TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0164-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Niu SJ, Liu XF, Yu XY, Wu HK. Synthesis and characterization of diiron(I) 1,2-dimethylethanedithiolate complexes with bridging or chelating 1,2-bis(diphenylphosphino)ethylene. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1340645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shu-Jing Niu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xiao-Yong Yu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
36
|
Synthetic and structural studies of diiron toluenedithiolate complexes coordinated by monophosphine or bridging diphosphine ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
|
38
|
Liu XF. Structural studies of diiron complexes with monophosphine ligands tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1246722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
39
|
Liu XF. Synthesis and structures of diiron dithiolate complexes with 1,2-bis(diphenylphosphino)acetylene or tris(2-methoxyphenyl)phosphine. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Song LC, Wang YX, Xing XK, Ding SD, Zhang LD, Wang XY, Zhang HT. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Chemistry 2016; 22:16304-16314. [DOI: 10.1002/chem.201603040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P.R. China
| | - Yong-Xiang Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Kang Xing
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Shu-Da Ding
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Long-Duo Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Yong Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Hong-Tao Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
41
|
Lalaoui N, Reuillard B, Philouze C, Holzinger M, Cosnier S, Le Goff A. Osmium(II) Complexes Bearing Chelating N-Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noémie Lalaoui
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Bertrand Reuillard
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Christian Philouze
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Michael Holzinger
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Serge Cosnier
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Alan Le Goff
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
42
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Ohki Y, Hoshino R, Tatsumi K. N-Heterocyclic Carbene Complexes of Three- and Four-Coordinate Fe(I). Organometallics 2016. [DOI: 10.1021/acs.organomet.5b01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department
of Chemistry, Graduate School of Science, and Research Center for
Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoko Hoshino
- Department
of Chemistry, Graduate School of Science, and Research Center for
Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuyuki Tatsumi
- Department
of Chemistry, Graduate School of Science, and Research Center for
Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
44
|
Song LC, Luo FX, Liu BB, Gu ZC, Tan H. Novel Ruthenium Phthalocyanine-Containing Model Complex for the Active Site of [FeFe]-Hydrogenases: Synthesis, Structural Characterization, and Catalytic H2 Evolution. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b01040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Fei-Xian Luo
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Zhen-Chao Gu
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Hao Tan
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Liu YC, Yen TH, Chu KT, Chiang MH. Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1115397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Filippi G, Arrigoni F, Bertini L, De Gioia L, Zampella G. DFT Dissection of the Reduction Step in H2 Catalytic Production by [FeFe]-Hydrogenase-Inspired Models: Can the Bridging Hydride Become More Reactive Than the Terminal Isomer? Inorg Chem 2015; 54:9529-42. [DOI: 10.1021/acs.inorgchem.5b01495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulia Filippi
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
47
|
Bethel RD, Crouthers DJ, Hsieh CH, Denny JA, Hall MB, Darensbourg MY. Regioselectivity in Ligand Substitution Reactions on Diiron Complexes Governed by Nucleophilic and Electrophilic Ligand Properties. Inorg Chem 2015; 54:3523-35. [DOI: 10.1021/acs.inorgchem.5b00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan D. Bethel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Danielle J. Crouthers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Jason A. Denny
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
48
|
Santo K, Hirotsu M, Kinoshita I. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties. Dalton Trans 2015; 44:4155-66. [DOI: 10.1039/c4dt03422h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox properties of C,S-bridged diiron complexes were controlled by using dibenzothienyl Schiff base precursors with an N,N- or N,P-chelating moiety.
Collapse
Affiliation(s)
- Kiyokazu Santo
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| | - Masakazu Hirotsu
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| | - Isamu Kinoshita
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| |
Collapse
|
49
|
Wang Y, Zhang T, Li B, Jiang S, Sheng L. Synthesis, characterization, electrochemical properties and catalytic reactivity of N-heterocyclic carbene-containing diiron complexes. RSC Adv 2015. [DOI: 10.1039/c4ra15150j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four new [Fe–Fe]–NHC complexes were synthesized and used as highly selective homogeneous catalysts for the direct hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tianyong Zhang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin Li
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shuang Jiang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Liao Sheng
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
50
|
Cui HH, Wu NN, Wang JY, Hu MQ, Wen HM, Chen CN. Pyridyl- and pyrimidyl-phosphine-substituted [FeFe]-hydrogenase mimics: Synthesis, charaterization and properties. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|