1
|
Maji M, Riedel R, Schrock RR, Conley MP, Carta V. Syntheses of Tungsten Imido Cyclohexylidene Complexes Using Perfluoro-t-Butanol or Hexafluoro-t-Butanol as Acids. Angew Chem Int Ed Engl 2024:e202410923. [PMID: 39136166 DOI: 10.1002/anie.202410923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
The fluorinated alcohols, (CF3)3COH (RF9OH) and (CF3)2MeCOH (RF6OH), react with W(NR)2Cy2 (Cy=Cyclohexyl; R=2,6-diisopropylphenyl or 1-adamantyl) in C6D6 at 55 °C to give cyclohexylidene complexes. Traditional routes to terminal alkylidene complexes (neopentylidene or neophylidene) have used either triflic acid or HCl (rarely), but relatively weak fluorinated acids are sufficient and active bisalkoxide catalysts are therefore prepared directly. An α hydrogen abstraction reaction to give a cyclohexylidene complex from a biscyclohexyl complex appears to be as facile as α hydrogen abstraction to give a neopentylidene or neophylidene ligand, but isomerization of a cyclohexene formed through β hydrogen abstraction is also a possibility. The ORF9 ligands can be replaced readily with dimethylpyrrolide (Me2Pyr) or other more basic alkoxides. Single crystal X-ray studies were carried out on W(NAr)2Cy2, W(NAr)(ORF9)2(C6H10)(ArNH2), W(NAr)(ORF6)2(C6H10)(ArNH2), W(NAd)(ORF9)2(C6H10)(AdNH2), W(NAr)(O-i-PrF6)3Cy, and W(NAd)(η1-Me2Pyr)2(C6H10) (C6H10=cyclohexylidene).
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry, University of California at Riverside, Riverside California, 92521, USA
| | - René Riedel
- Department of Chemistry, University of California at Riverside, Riverside California, 92521, USA
| | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside California, 92521, USA
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside California, 92521, USA
| | - Veronica Carta
- Department of Chemistry, University of California at Riverside, Riverside California, 92521, USA
| |
Collapse
|
2
|
Maji M, Sousa-Silva A, Solans-Monfort X, Schrock RR, Conley MP, Farias P, Carta V. Thermal Formation of Metathesis-Active Tungsten Alkylidene Complexes from Cyclohexene. J Am Chem Soc 2024; 146:18661-18671. [PMID: 38917446 DOI: 10.1021/jacs.4c05256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A 7-tungstabicyclo[4.3.0]nonane complex forms slowly upon addition of cyclohexene to the ethylene complex, W(NAr)(OSiPh3)2(C2H4), at 22 °C. A single-crystal X-ray study showed its structure to be closest to a square pyramid (τ = 0.23). At 22 °C, loss of cyclohexene or ring contraction of the 7-tungstabicyclo[4.3.0]nonane complex is slow. Above ∼80 °C, cyclohexene is ejected to give W(NAr)(OSiPh3)2(C2H4), but a sufficient amount of 7-tungstabicyclo[4.3.0]nonane complex remains in the presence of cyclohexene and the ring contracts to yield methylenecyclohexane and a methylidene complex or ethylene and a cyclohexylidene complex. Other complexes that have been observed include an 8-tungstabicyclo[4.3.0]nonane complex formed from 1,7-octadiene, a 7-tungstabicyclo[4.2.0]octane complex (formed from a methylidene complex and cyclohexene), and a methylenecyclohexane complex. 13C-Labeling studies show that the exo-methylene group in methylenecyclohexane and the α positions in the 8-tungstabicyclo[4.3.0]nonane come from ethylene. An alternative ring contraction of a tungstacyclopentane made from two molecules of cyclohexene cannot be excluded when concentrations of ethylene are low. A cyclohexylidene complex could also form from two cyclohexenes via a newly proposed "alkyl/allyl" mechanism. The results reported here are the first experimental confirmations that a tungstacyclopentane can ring-contract thermally at a substituted WCα position to form a tungstacyclobutane and therefore metathesis-active alkylidenes.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | | | | | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Kawabuchi Y, Suzuki T, Wada Y, Sunada Y. Reductive Retrocyclization of a Mangana(II)cyclopentasilane to Form Manganese(0) Bis(η 2-disilene) Complexes. Angew Chem Int Ed Engl 2024; 63:e202319804. [PMID: 38329155 DOI: 10.1002/anie.202319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Ligand-exchange reactions on a mangana(II)cyclopentasilane complex that contains two THF ligands with aryl isocyanides led to the formation of manganese(0) bis(η2-disilene) complexes via a retrocyclization. In stark contrast, ligand-exchange reactions with CNtBu, an N-heterocyclic carbene, or pyridine-based ligands furnished manganese(II) complexes wherein the manganacyclopentasilane framework remained intact. The thermolysis of the obtained bis(η2-disilene) complex in the presence of mesityl isocyanide led to the formation of a cyclotetrasilane via the formal dimerization of the two η2-disilene moieties. The insertion of a mesityl isocyanide into the Mn-Siβ bond results in the formation of a manganese(II) complex supported by a [SiCSi]-type tridentate ligand scaffold.
Collapse
Affiliation(s)
- Yosuke Kawabuchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Takuma Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yoshimasa Wada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
4
|
Rodriguez J, Boudjelel M, Schrock RR, Conley MP. A Tungsten Oxo Alkylidene Supported on Sulfated Zirconium Oxide for Olefin Metathesis. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Liu S, Conley MP, Schrock RR. Synthesis of Mo(IV) para-Substituted Styrene Complexes and an Exploration of Their Conversion to 1-Phenethylidene Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sumeng Liu
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
6
|
Saha S, Averkiev B, Sues PE. Ruthenium Phosphinimine Complex as a Fast-Initiating Olefin Metathesis Catalyst with Competing Catalytic Cycles. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sayantani Saha
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66503, United States
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66503, United States
| | - Peter E. Sues
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66503, United States
| |
Collapse
|
7
|
Rodriguez J, Boudjelel M, Mueller LJ, Schrock RR, Conley MP. Ring Contraction of a Tungstacyclopentane Supported on Silica: Direct Conversion of Ethylene to Propylene. J Am Chem Soc 2022; 144:18761-18765. [PMID: 36197795 DOI: 10.1021/jacs.2c07934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of W(NAr)(13C4H8)(OSiPh3)2 (1) (NAr = 2,6-diisopropylphenylimido) with silica partially dehydroxylated at 700 °C (SiO2-700) is highly dependent on the reaction conditions. The primary product of this reaction is W(NAr)(13C4H8)(OSiPh3)(OSi(O-)3) (2) when the reaction is carried out in the dark. Grafting 1 onto SiO2-700 in ambient lab light results in the formation of 2, W(NAr)(13CH213CH2)(OSiPh3)(OSi(O-)3) (4), and one isomer of square-pyramidal W(NAr)(13CH213CH(13Me)13CH2)(OSiPh3)(OSi(O-)3) (3). Heating 2 to 85 °C for 6 h results in the formation of 3, 4, W(NAr)(13CH(13Me)13CH213CH2)(OSiPh3)(OSi(O-)3) (5), and W(NAr)((13CH2)213CH(13Me)(13CH2)2)(OSiPh3)(OSi(O-)3) (6). Photolysis of 2 with blue LEDs (λmax = 450 nm) produces 4, both isomers of 3, 5, and free ethylene. In the presence of excess ethylene and blue LED irradiation at 85 °C, 1/SiO2-700 catalyzes the direct conversion of ethylene to propylene.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Richard R Schrock
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Musso JV, De Jesus Silva J, Benedikter MJ, Groos J, Frey W, Copéret C, Buchmeiser MR. Cationic molybdenum oxo alkylidenes stabilized by N-heterocyclic carbenes: from molecular systems to efficient supported metathesis catalysts. Chem Sci 2022; 13:8649-8656. [PMID: 35974748 PMCID: PMC9337747 DOI: 10.1039/d2sc03321f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 01/14/2023] Open
Abstract
Cationic d0 group 6 olefin metathesis catalysts have been recently shown to display in most instances superior activity in comparison to their neutral congeners. Furthermore, their catalytic performance is greatly improved upon immobilization on silica. In this context, we have developed the new family of molecular cationic molybdenum oxo alkylidene complexes stabilized by N-heterocyclic carbenes of the general formula [Mo(O)(CHCMe3)(IMes)(OR)[X-]] (IMes = 1,3-dimesitylimidazol-2-ylidene; R = 1,3-dimesityl-C6H3, C6F5; X- = B(3,5-(CF3)2C6H3)4 -, B(ArF)4, tetrakis(perfluoro-t-butoxy)aluminate (PFTA)). Immobilization of [Mo(O)(CHCMe3)(IMes)(O-1,3-dimesityl-C6H3)+B(ArF)4 -] on silica via surface organometallic chemistry yields an active alkene metathesis catalyst that shows the highest productivity towards terminal olefins amongst all existing molybdenum oxo alkylidene catalysts.
Collapse
Affiliation(s)
- Janis V Musso
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Mathis J Benedikter
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Jonas Groos
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
- German Institutes of Textile and Fiber Research (DITF) Denkendorf Körschtalstr. 26, 73770 Denkendorf Germany
| |
Collapse
|
9
|
Boudjelel M, Riedel R, Schrock RR, Conley MP, Berges AJ, Carta V. Tungstacyclopentane Ring Contraction Yields Olefin Metathesis Catalysts. J Am Chem Soc 2022; 144:10929-10942. [PMID: 35675389 DOI: 10.1021/jacs.2c03732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Exposure of a solution of the square pyramidal tungstacyclopentane complex W(NAr)(OSiPh3)2(C4H8) (Ar = 2,6-i-Pr2C6H3) to ethylene at 22 °C in ambient (fluorescent) light slowly leads to the formation of propylene and the square pyramidal tungstacyclobutane complex W(NAr)(OSiPh3)2(C3H6). No reaction takes place in the dark, but the reaction is >90% complete in ∼15 min under blue LED light (∼450 nm λmax). The intermediates are proposed to be (first) an α methyl tungstacyclobutane complex (W(NAr)(OSiPh3)2(αMeC3H5)), and then from it, a β methyl version. The TBP versions of each can lose propylene and form a methylene complex, and in the presence of ethylene, the unsubstituted tungstacyclobutane complex W(NAr)(OSiPh3)2(C3H6). The W-Cα bond in an unobservable TBP W(NAr)(OSiPh3)2(C4H8) isomer in which the C4H8 ring is equatorial is proposed to be cleaved homolytically by light. A hydrogen atom moves or is moved from C3 to the terminal C4 carbon in the butyl chain as the bond between W and C3 forms to give the TBP α methyl tungstacyclobutane complex. Essentially, the same behavior is observed for W(NCPh3)(OSiPh3)2(C4H8) as for W(NAr)(OSiPh3)2(C4H8), except that the rate of consumption of W(NCPh3)(OSiPh3)2(C4H8) is about half that of W(NAr)(OSiPh3)2(C4H8). In this case, an α methyl-substituted tungstacyclobutane intermediate is observed, and the overall rate of formation of W(NCPh3)(OSiPh3)2(C3H6) and propylene from W(NCPh3)(OSiPh3)2(C4H8) is ∼20 times slower than in the NAr system. These results constitute the first experimentally documented examples of forming a metallacyclobutane ring from a metallacyclopentane ring (ring contraction) and establish how metathesis-active methylene and metallacyclobutane complexes can be formed and reformed in the presence of ethylene. They also raise the possibility that ambient light could play a role in some metathesis reactions that involve ethylene and tungsten-based imido alkylidene olefin metathesis catalysts, if not others.
Collapse
Affiliation(s)
- Maxime Boudjelel
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - René Riedel
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Adam J Berges
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Paul B, Schrock RR, Carta V. Synthesis of Molybdenum(VI) Tritylimido Alkylidene Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
11
|
Muraoka T, Suzuki Y, Tsuchimoto M, Trigagema G, Ueno K, Koyama S. Synthesis and structure of a pyridine-stabilized silanone molybdenum complex and its reactions with PMe 3 and acetone. Dalton Trans 2022; 51:18203-18212. [DOI: 10.1039/d2dt02560d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synthesis, structure and reactivity of a pyridine-stabilized silanone molybdenum complex are described.
Collapse
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yuzuki Suzuki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masato Tsuchimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Gama Trigagema
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Keiji Ueno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Shinji Koyama
- Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
12
|
Liu S, Boudjelel M, Schrock RR, Conley MP, Tsay C. Interconversion of Molybdenum or Tungsten d 2 Styrene Complexes with d 0 1-Phenethylidene Analogues. J Am Chem Soc 2021; 143:17209-17218. [PMID: 34633807 DOI: 10.1021/jacs.1c08086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon addition of 5-15% PhNMe2H+X- (X = B(3,5-(CF3)2C6H3)4 or B(C6F5)4) to Mo(NAr)(styrene)(OSiPh3)2 (Ar = N-2,6-i-Pr2C6H3) in C6D6 an equilibrium mixture of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2 is formed over 36 h at 45 °C (Keq = 0.36). A plausible intermediate in the interconversion of the styrene and 1-phenethylidene complexes is the 1-phenethyl cation, [Mo(NAr)(CHMePh)(OSiPh3)2]+, which can be generated using [(Et2O)2H][B(C6F5)4] as the acid. The interconversion can be modeled as two equilibria involving protonation of Mo(NAr)(styrene)(OSiPh3)2 or Mo(NAr)(CMePh)(OSiPh3)2 and deprotonation of the α or β phenethyl carbon atom in [Mo(NAr)(CHMePh)(OSiPh3)2]+. The ratio of the rate of deprotonation of [Mo(NAr)(CHMePh)(OSiPh3)2]+ by PhNMe2 in the α position versus the β position is ∼10, or ∼30 per Hβ. The slow step is protonation of Mo(NAr)(styrene)(OSiPh3)2 (k1 = 0.158(4) L/(mol·min)). Proton sources such as (CF3)3COH or Ph3SiOH do not catalyze the interconversion of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2, while the reaction of Mo(NAr)(styrene)(OSiPh3)2 with pyridinium salts generates only a trace (∼2%) of Mo(NAr)(CMePh)(OSiPh3)2 and forms a monopyridine adduct, [Mo(NAr)(CHMePh)(OSiPh3)2(py)]+ (two diastereomers). The structure of [Mo(NAr)(CHMePh)(OSiPh3)2]+ has been confirmed in an X-ray study; there is no structural indication that a β proton is activated through a CHβ interaction with the metal. W(NAr)(CMePh)(OSiPh3)2 is also converted into a mixture of W(NAr)(CMePh)(OSiPh3)2 and W(NAr)(styrene)(OSiPh3)2 (Keq = 0.47 at 45 °C in favor of the styrene complex) with 10% [PhNMe2H][B(C6F5)4] as the catalyst; the time required to reach equilibrium is approximately the same as in the Mo system.
Collapse
Affiliation(s)
- Sumeng Liu
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Charlene Tsay
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
13
|
Schowner R, Musso JV, Frey W, Buchmeiser MR. Cationic Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes That Contain Bulky Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Michael R. Buchmeiser
- German Institutes of Textile and Fiber Research (DITF) Denkendorf, Körschtalstraße 26, D-73770 Denkendorf, Germany
| |
Collapse
|
14
|
Hoveyda AH, Liu Z, Qin C, Koengeter T, Mu Y. Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It. Angew Chem Int Ed Engl 2020; 59:22324-22348. [DOI: 10.1002/anie.202010205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Zhenxing Liu
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Can Qin
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Tobias Koengeter
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Yucheng Mu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
15
|
Hoveyda AH, Liu Z, Qin C, Koengeter T, Mu Y. Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Zhenxing Liu
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Can Qin
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Tobias Koengeter
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Yucheng Mu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
16
|
Benedikter MJ, Ziegler F, Groos J, Hauser PM, Schowner R, Buchmeiser MR. Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Tafazolian H, VenkatRamani S, Tsay C, Schrock RR, Müller P. Syntheses of Molybdenum and Tungsten Imido Alkylidene Complexes that Contain a Bidentate Oxo/Thiolato Ligand. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hosein Tafazolian
- Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA
- Department of Chemistry University of California at Riverside Riverside, California 92507 USA
| | - Sudarsan VenkatRamani
- Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA
| | - Charlene Tsay
- Department of Chemistry University of California at Riverside Riverside, California 92507 USA
| | - Richard R. Schrock
- Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA
- Department of Chemistry University of California at Riverside Riverside, California 92507 USA
| | - Peter Müller
- Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA
| |
Collapse
|
18
|
Affiliation(s)
- Jordan W. Taylor
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Charlene Tsay
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
19
|
Pucino M, Zhai F, Gordon CP, Mance D, Hoveyda AH, Schrock RR, Copéret C. Silica-Supported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angew Chem Int Ed Engl 2019; 58:11816-11819. [PMID: 31099940 DOI: 10.1002/anie.201903325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Indexed: 11/11/2022]
Abstract
Grafting a molybdenum oxo alkylidene on silica (partially dehydroxylated at 700 °C) affords the first example of a well-defined silica-supported Mo oxo alkylidene, which is an analogue of the putative active sites in heterogeneous Mo-based metathesis catalysts. In contrast to its tungsten analogue, which shows poor activity towards terminal olefins because of the formation of a stable off-cycle metallacyclobutane intermediate, the Mo catalyst shows high metathesis activity for both terminal and internal olefins that is consistent with the lower stability of Mo metallacyclobutane intermediates. This Mo oxo metathesis catalyst also outperforms its corresponding neutral silica-supported Mo and W imido analogues.
Collapse
Affiliation(s)
- Margherita Pucino
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Feng Zhai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher P Gordon
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Richard R Schrock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
20
|
Pucino M, Zhai F, Gordon CP, Mance D, Hoveyda AH, Schrock RR, Copéret C. Silica‐Supported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margherita Pucino
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Feng Zhai
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Christopher P. Gordon
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg, CNRS 67000 Strasbourg France
| | - Richard R. Schrock
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience ETH Zürich Vladimir Prelog Weg 2 8093 Zürich Switzerland
| |
Collapse
|
21
|
Tafazolian H, Tsay C, Schrock RR, Müller P. Syntheses of Molybdenum(VI) Imido Alkylidene Complexes That Contain a Bidentate Dithiolate Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hosein Tafazolian
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charlene Tsay
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard R. Schrock
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Chan KW, Lam E, D'Anna V, Allouche F, Michel C, Safonova OV, Sautet P, Copéret C. C-H Activation and Proton Transfer Initiate Alkene Metathesis Activity of the Tungsten(IV)-Oxo Complex. J Am Chem Soc 2018; 140:11395-11401. [PMID: 30110534 DOI: 10.1021/jacs.8b06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In alkene metathesis, while group 6 (Mo or W) high-oxidation state alkylidenes are accepted to be key reaction intermediates for both homogeneous and heterogeneous catalysts, it has been proposed that low valent species in their +4 oxidation state can serve as precatalysts. However, the activation mechanism for these latter species-generating alkylidenes-is still an open question. Here, we report the syntheses of tungsten(IV)-oxo bisalkoxide molecular complexes stabilized by pyridine ligands, WO(OR)2py3 (R = CMe(CF3)2 (2a), R = Si(O tBu)3 (2b), and R = C(CF3)3 (2c); py = pyridine), and show that upon activation with B(C6F5)3 they display alkene metathesis activities comparable to W(VI)-oxo alkylidenes. The initiation mechanism is examined by kinetic, isotope labeling and computational studies. Experimental evidence reveals that the presence of an allylic CH group in the alkene reactant is crucial for initiating alkene metathesis. Deuterium labeling of the allylic C-H group shows a primary kinetic isotope effect on the rate of initiation. DFT calculations support the formation of an allyl hydride intermediate via activation of the allylic C-H bond and show that formation of the metallacyclobutane from the allyl "hydride" involves a proton transfer facilitated by the coordination of a Lewis acid (B(C6F5)3) and assisted by a Lewis base (pyridine). This proton transfer step is rate determining and yields the metathesis active species.
Collapse
Affiliation(s)
- Ka Wing Chan
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Erwin Lam
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Vincenza D'Anna
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | - Florian Allouche
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Carine Michel
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | | | - Philippe Sautet
- Univ Lyon, Ens de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France.,Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
23
|
Zhizhko PA, Mougel V, De Jesus Silva J, Copéret C. Benchmarked Intrinsic Olefin Metathesis Activity: Mo vs
. W. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Pavel A. Zhizhko
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1-5 8093 Zürich Switzerland
| |
Collapse
|
24
|
Affiliation(s)
- Richard R. Schrock
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir
Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
25
|
Sues PE, John JM, Bukhryakov KV, Schrock RR, Müller P. Molybdenum and Tungsten Alkylidene Complexes That Contain a 2-Pyridyl-Substituted Phenoxide Ligand. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter E. Sues
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremy M. John
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Konstantin V. Bukhryakov
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard R. Schrock
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Schrock RR. Reducing Them Down To Charge Them Up: Low Temperature Catalyst Activation. ACS CENTRAL SCIENCE 2016; 2:495-496. [PMID: 27610409 PMCID: PMC4999967 DOI: 10.1021/acscentsci.6b00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
27
|
Farrell WS, Yonke BL, Reeds JP, Zavalij PY, Sita LR. Small-Molecule Activation within the Group 6 Complexes (η5-C5Me5)[N(iPr)C(Me)N(iPr)]M(CO)(L) for M = Mo, W and L = N2, NCMe, η2-Alkene, SMe2, C3H6O. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wesley S. Farrell
- Department of Chemistry and
Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Brendan L. Yonke
- Department of Chemistry and
Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jonathan P. Reeds
- Department of Chemistry and
Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y. Zavalij
- Department of Chemistry and
Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lawrence R. Sita
- Department of Chemistry and
Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Jeong H, Schrock RR, Müller P. Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a tert-Butylimido Ligand. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyangsoo Jeong
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard R. Schrock
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Perdriau S, Chang MC, Otten E, Heeres HJ, de Vries JG. Alkene Isomerisation Catalysed by a Ruthenium PNN Pincer Complex. Chemistry 2014; 20:15434-42. [DOI: 10.1002/chem.201403236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022]
|
30
|
Dobereiner GE, Erdogan G, Larsen CR, Grotjahn DB, Schrock RR. A One-Pot Tandem Olefin Isomerization/Metathesis-Coupling (ISOMET) Reaction. ACS Catal 2014. [DOI: 10.1021/cs500889x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gulin Erdogan
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - Casey R. Larsen
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - Douglas B. Grotjahn
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - Richard R. Schrock
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Muraoka T, Abe K, Kimura H, Haga Y, Ueno K, Sunada Y. Synthesis, structures, and reactivity of the base-stabilized silanone molybdenum complexes. Dalton Trans 2014; 43:16610-3. [DOI: 10.1039/c4dt02159b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Base-stabilized silanone molybdenum complexes were synthesized by the oxygenation of the MSi bond in the silyl(silylene)molybdenum complex with 1 eq. of PNO in the presence of Lewis base L.
Collapse
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515, Japan
| | - Keisuke Abe
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515, Japan
| | - Haruhiko Kimura
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515, Japan
| | - Youhei Haga
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515, Japan
| | - Keiji Ueno
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515, Japan
| | - Yusuke Sunada
- Institute for Materials Chemistry and Engineering
- and Graduate School of Engineering Sciences
- Kyushu University
- Kasuga, Japan
| |
Collapse
|
32
|
Peryshkov DV, Forrest WP, Schrock RR, Smith SJ, Müller P. B(C6F5)3 Activation of Oxo Tungsten Complexes That Are Relevant to Olefin Metathesis. Organometallics 2013. [DOI: 10.1021/om4007906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry V. Peryshkov
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - William P. Forrest
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Richard R. Schrock
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stacey J. Smith
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Peter Müller
- Department
of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
33
|
Dobereiner GE, Yuan J, Schrock RR, Goldman AS, Hackenberg JD. Catalytic Synthesis of n-Alkyl Arenes through Alkyl Group Cross-Metathesis. J Am Chem Soc 2013; 135:12572-5. [DOI: 10.1021/ja4066392] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department
of Chemistry, 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Jian Yuan
- Department
of Chemistry, 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Richard R. Schrock
- Department
of Chemistry, 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Alan S. Goldman
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jason D. Hackenberg
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
34
|
Yuan J, Schrock RR, Gerber LCH, Müller P, Smith S. Synthesis and ROMP Chemistry of Decafluoroterphenoxide Molybdenum Imido Alkylidene and Ethylene Complexes. Organometallics 2013. [DOI: 10.1021/om400199u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Yuan
- Department of Chemistry
6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard R. Schrock
- Department of Chemistry
6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Laura C. H. Gerber
- Department of Chemistry
6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry
6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stacey Smith
- Department of Chemistry
6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Flook MM, Börner J, Kilyanek SM, Gerber LCH, Schrock RR. Five-Coordinate Rearrangements of Metallacyclobutane Intermediates during Ring-Opening Metathesis Polymerization of 2,3-Dicarboalkoxynorbornenes by Molybdenum and Tungsten Monoalkoxide Pyrrolide Initiators. Organometallics 2012. [DOI: 10.1021/om300530p] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margaret M. Flook
- Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts
02139, United States
| | - Janna Börner
- Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts
02139, United States
| | - Stefan M. Kilyanek
- Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts
02139, United States
| | - Laura C. H. Gerber
- Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts
02139, United States
| | - Richard R. Schrock
- Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
36
|
Townsend EM, Schrock RR, Hoveyda AH. Z-selective metathesis homocoupling of 1,3-dienes by molybdenum and tungsten monoaryloxide pyrrolide (MAP) complexes. J Am Chem Soc 2012; 134:11334-7. [PMID: 22734508 DOI: 10.1021/ja303220j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molybdenum or tungsten monoaryloxide pyrrolide (MAP) complexes that contain OHIPT as the aryloxide (hexaisopropylterphenoxide) are effective catalysts for homocoupling of simple (E)-1,3-dienes to give (E,Z,E)-trienes in high yield and with high Z selectivities. A vinylalkylidene MAP species was shown to have the expected syn structure in an X-ray study. MAP catalysts that contain OHMT (hexamethylterphenoxide) are relatively inefficient.
Collapse
Affiliation(s)
- Erik M Townsend
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
37
|
Herndon JW. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2010. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Khalimon AY, Sherbrooke O, Peterson E, Simionescu R, Kuzmina LG, Howard JAK, Nikonov GI. Mechanistic aspects of hydrosilylation catalyzed by (ArN=)Mo(H)(Cl)(PMe3)3. Inorg Chem 2012; 51:4300-13. [PMID: 22435952 DOI: 10.1021/ic300010c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of (ArN=)MoCl(2)(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with L-Selectride gives the hydrido-chloride complex (ArN=)Mo(H)(Cl)(PMe(3))(3) (2). Complex 2 was found to catalyze the hydrosilylation of carbonyls and nitriles as well as the dehydrogenative silylation of alcohols and water. Compound 2 does not show any productive reaction with PhSiH(3); however, a slow H/D exchange and formation of (ArN=)Mo(D)(Cl)(PMe(3))(3) (2(D)) was observed upon addition of PhSiD(3). Reactivity of 2 toward organic substrates was studied. Stoichiometric reactions of 2 with benzaldehyde and cyclohexanone start with dissociation of the trans-to-hydride PMe(3) ligand followed by coordination and insertion of carbonyls into the Mo-H bond to form alkoxy derivatives (ArN=)Mo(Cl)(OR)(PMe(2))L(2) (3: R = OCH(2)Ph, L(2) = 2 PMe(3); 5: R = OCH(2)Ph, L(2) = η(2)-PhC(O)H; 6: R = OCy, L(2) = 2 PMe(3)). The latter species reacts with PhSiH(3) to furnish the corresponding silyl ethers and to recover the hydride 2. An analogous mechanism was suggested for the dehydrogenative ethanolysis with PhSiH(3), with the key intermediate being the ethoxy complex (ArN=)Mo(Cl)(OEt)(PMe(3))(3) (7). In the case of hydrosilylation of acetophenone, a D-labeling experiment, i.e., a reaction of 2 with acetophenone and PhSiD(3) in the 1:1:1 ratio, suggests an alternative mechanism that does not involve the intermediacy of an alkoxy complex. In this particular case, the reaction presumably proceeds via Lewis acid catalysis. Similar to the case of benzaldehyde, treatment of 2 with styrene gives trans-(ArN=)Mo(H)(η(2)-CH(2)═CHPh)(PMe(3))(2) (8). Complex 8 slowly decomposes via the release of ethylbenzene, indicating only a slow insertion of styrene ligand into the Mo-H bond of 8.
Collapse
Affiliation(s)
- Andrey Y Khalimon
- Chemistry Department, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Marinescu SC, Schrock RR, Müller P, Takase MK, Hoveyda AH. Room Temperature Z-Selective Homocoupling of α Olefins by Tungsten Catalysts. Organometallics 2011; 30:1780-1782. [PMID: 21686089 DOI: 10.1021/om200150c] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Smaranda C Marinescu
- Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | | | |
Collapse
|