Iron MA, Janes T. Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange-Correlation Functionals: The MOBH35 Benchmark Database.
J Phys Chem A 2019;
123:3761-3781. [PMID:
30973722 DOI:
10.1021/acs.jpca.9b01546]
[Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new database of transition metal reaction barrier heights (MOBH35) is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann-1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange-correlation functionals, including the latest from the Martin, Truhlar, and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.7 kcal/mol), ωB97M-D3BJ (MAD 1.9 kcal/mol), ωB97X-V (MAD 2.0 kcal/mol), and revTPSS0-D4 (MAD 2.2 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals B2K-PLYP (MAD 1.7 kcal/mol) and revDOD-PBEP86-D4 (MAD 1.8 kcal/mol) also performed well, but this has to be balanced by their increased computational cost.
Collapse