1
|
Selan OTE, Cheah MH, Abrahams BF, Gable RW, Best SP. Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compounds†. Aust J Chem 2022. [DOI: 10.1071/ch21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Torres A, Collado A, Gómez-Gallego M, Ramírez de Arellano C, Sierra MA. Electrocatalytic Behavior of Tetrathiafulvalene (TTF) and Extended Tetrathiafulvalene (exTTF) [FeFe] Hydrogenase Mimics. ACS ORGANIC & INORGANIC AU 2021; 2:23-33. [PMID: 36855407 PMCID: PMC9954209 DOI: 10.1021/acsorginorgau.1c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TTF- and exTTF-containing [(μ-S2)Fe2(CO)6] complexes have been prepared by the photochemical reaction of TTF or exTTF and [(μ-S2)Fe2(CO)6]. These complexes are able to interact with PAHs. In the absence of air and in acid media an electrocatalytic dihydrogen evolution reaction (HER) occurs, similarly to analogous [(μ-S2)Fe2(CO)6] complexes. However, in the presence of air, the TTF and exTTF organic moieties strongly influence the electrochemistry of these systems. The reported data may be valuable in the design of [FeFe] hydrogenase mimics able to combine the HER properties of the [FeFe] cores with the unique TTF properties.
Collapse
Affiliation(s)
- Alejandro Torres
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Alba Collado
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Ramírez de Arellano
- Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Valencia, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Email for M.A.S.:
| |
Collapse
|
4
|
Rahaman A, Lisensky GC, Haukka M, Tocher DA, Richmond MG, Colbran SB, Nordlander E. Proton reduction by phosphinidene-capped triiron clusters. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Arrigoni F, Rizza F, Vertemara J, Breglia R, Greco C, Bertini L, Zampella G, De Gioia L. Rational Design of Fe 2 (μ-PR 2 ) 2 (L) 6 Coordination Compounds Featuring Tailored Potential Inversion. Chemphyschem 2020; 21:2279-2292. [PMID: 32815583 DOI: 10.1002/cphc.202000623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Indexed: 01/04/2023]
Abstract
It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i. e. with second reduction easier than the first. With the aim of revealing key factors to tailor the span between first and second redox potentials, we performed a systematic density functional study of a 26-molecule set of models with the general formula Fe2 (μ-PR2 )2 (L)6 . It turned out that specific features such as i) a Fe-Fe antibonding character of the LUMO, ii) presence of electron-donor groups and iii) low steric congestion in the Fe's coordination sphere, are key ingredients for PI. In particular, the synergic effects of i)-iii) can lead to a span between first and second redox potentials larger than 700 mV. More generally, the "molecular recipes" herein described are expected to inspire the synthesis of Fe2 P2 systems with tailored PI, of primary relevance to the design of electron-bifurcating molecular devices.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Fabio Rizza
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
7
|
Shimamura T, Maeno Y, Kubo K, Kume S, Greco C, Mizuta T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans 2019; 48:16595-16603. [PMID: 31651000 DOI: 10.1039/c9dt03427g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge. The molecular structure of 3 indicated that the trigonal plane of the NEt2 group was forced to face the Fe-Fe bond to avoid steric congestion with the naphthylene group linking the two phosphide groups. The NEt2 group could be protonated by p-toluenesulfonic acid. Density functional theory (DFT) calculations confirmed that the proton of the N(H)Et2 group adopted a position close to the bridging hydride. The DFT results for the ferrocene analogue 1, in which the 1,8-naphthylene group of 3 was replaced with the 1,1'-ferrocenylene group, also revealed that the most stable orientation of the protonated NHEt2 group was that in the protonated 3. As a result, electrochemical proton reduction reactions using complexes 1 and 3 proceeded with similar catalytic efficiencies. Unfortunately, the catalytic efficiencies (CEs) of these complexes were much lower than those of the complexes with a proton relay system of the terminal hydrogen, indicating that the reactive properties of the bridging hydride in the present proton relay system cannot exceed those of the terminal hydride.
Collapse
Affiliation(s)
- Takehiko Shimamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Hydrogenase Biomimetics with Redox-Active Ligands: Synthesis, Structure, and Electrocatalytic Studies on [Fe2(CO)4(κ2-dppn)(µ-edt)] (edt = Ethanedithiolate; dppn = 1,8-bis(Diphenylphosphino)Naphthalene). INORGANICS 2018. [DOI: 10.3390/inorganics6040122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Addition of the bulky redox-active diphosphine 1,8-bis(diphenylphosphino)naphthalene (dppn) to [Fe2(CO)6(µ-edt)] (1) (edt = 1,2-ethanedithiolate) affords [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) as the major product, together with small amounts of a P–C bond cleavage product [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2). The redox properties of 3 have been examined by cyclic voltammetry and it has been tested as a proton-reduction catalyst. It undergoes a reversible reduction at E1/2 = −2.18 V and exhibits two overlapping reversible oxidations at E1/2 = −0.08 V and E1/2 = 0.04 V. DFT calculations show that while the Highest Occupied Molecular Orbital (HOMO) is metal-centred (Fe–Fe σ-bonding), the Lowest Unoccupied Molecular Orbital (LUMO) is primarily ligand-based, but also contains an antibonding Fe–Fe contribution, highlighting the redox-active nature of the diphosphine. It is readily protonated upon addition of strong acids and catalyzes the electrochemical reduction of protons at Ep = −2.00 V in the presence of CF3CO2H. The catalytic current indicates that it is one of the most efficient diiron electrocatalysts for the reduction of protons, albeit operating at quite a negative potential.
Collapse
|
10
|
Rahaman A, Gimbert-Suriñach C, Ficks A, Ball GE, Bhadbhade M, Haukka M, Higham L, Nordlander E, Colbran SB. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Dalton Trans 2017; 46:3207-3222. [PMID: 28221379 DOI: 10.1039/c6dt01494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the substitution, orientation and structure of the phosphido bridges in [Fe2(CO)6(μ-PR2)2] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe2(CO)6{μ-P(Ar)H}2] (1a(Ar): Ar = Ph, 2'-methoxy-1,1'-binaphthyl (bn')), e,e-[Fe2(CO)6{μ-P(Ar)H}2] (1b(Ar): Ar = Ph, bn') were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe3(CO)9(μ-CO)(μ3-Pbn')] (2) and [Fe3(CO)9(μ3-PAr)2] (3(Ar), Ar = Ph, bn'). A ferrocenyl (Fc)-substituted dimer [Fe2(CO)6{μ:μ'-1,2-(P(CH2Fc)CH2)2C6H4}] (4), in which the two phosphido bridges are linked by an o-xylyl group, was also prepared. The molecular structures of complexes 1a(Ph), 1b(Ph), 1b(bn'), 2 and 4 were established by X-ray crystallography. All complexes have been examined as electrocatalysts for proton reduction using p-toluene sulfonic acid in tetrahydrofuran. Cyclic voltammograms of the dimers with acid exhibit two catalysis waves for proton reduction. The first wave, which appears at the potential of the primary reduction, reaches maximum current (turnover) at moderate acid concentrations and is rapidly overtaken by the second wave, which appears at more negative potential. Both of these reductive waves show an initial first order dependence on acid. The electrochemistry and electrocatalyses of the [Fe2(CO)6(μ-PR2)2] dimers show subtle variations with the nature of the bridging phosphido group(s), including the orientation of bridgehead hydrogen atoms.
Collapse
Affiliation(s)
- Ahibur Rahaman
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | | | - Arne Ficks
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Graham E Ball
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mohan Bhadbhade
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland
| | - Lee Higham
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | - Stephen B Colbran
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Rana S, Ghosh S, Hossain MK, Rahaman A, Hogarth G, Kabir SE. Hydrogenase biomimetics: structural and spectroscopic studies on diphosphine-substituted derivatives of Fe2(CO)6(µ-edt) (edt = ethanedithiolate) and Fe2(CO)6(µ-tdt) (tdt = 1,3-toluenedithiolate). TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0097-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Ghosh S, Rahaman A, Holt KB, Nordlander E, Richmond MG, Kabir SE, Hogarth G. Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(κ2-diamine)(μ-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Mazzoni R, Gabiccini A, Cesari C, Zanotti V, Gualandi I, Tonelli D. Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Alberto Gabiccini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| |
Collapse
|
14
|
McSkimming A, Chan B, Bhadbhade MM, Ball GE, Colbran SB. Bio-Inspired Transition Metal-Organic Hydride Conjugates for Catalysis of Transfer Hydrogenation: Experiment and Theory. Chemistry 2014; 21:2821-34. [DOI: 10.1002/chem.201405129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 11/07/2022]
|
15
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
16
|
Newman GL, Rahman JMA, Gluyas JBG, Yufit DS, Howard JAK, Low PJ. Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
|
18
|
Lansing JC, Camara JM, Gray DE, Rauchfuss TB. Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site. Organometallics 2014; 33:5897-5906. [PMID: 25364093 PMCID: PMC4210170 DOI: 10.1021/om5004013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/18/2022]
Abstract
Active site mimics of [FeFe]-hydrogenase are shown to be bidirectional catalysts, producing H2 upon treatment with protons and reducing equivalents. This reactivity complements the previously reported oxidation of H2 by these same catalysts in the presence of oxidants. The complex Fe2(adtBn)(CO)3(dppv)(PFc*Et2 ) ([1]0; adtBn = (SCH2)2NBn, dppv = cis-1,2-bis(diphenylphosphino)ethylene, PFc*Et2 = Et2PCH2C5Me4FeCp*) reacts with excess [H(OEt2)2]BArF4 (BArF4- = B(C6H3-3,5-(CF3)2)4-) to give ∼0.5 equiv of H2 and [Fe2(adtBnH)(CO)3(dppv)(PFc*Et2 )]2+ ([1H]2+). The species [1H]2+ consists of a ferrocenium ligand, an N-protonated amine, and an FeIFeI core. In the presence of additional reducing equivalents in the form of decamethylferrocene (Fc*), hydrogen evolution is catalytic, albeit slow. The related catalyst Fe2(adtBn)(CO)3(dppv)(PMe3) (3) behaves similarly in the presence of Fc*, except that in the absence of excess reducing agent it converts to the catalytically inactive μ-hydride derivative [μ-H3]+. Replacement of the adt in [1]0 with propanedithiolate (pdt) results in a catalytically inactive complex. In the course of synthesizing [FeFe]-hydrogenase mimics, new routes to ferrocenylphosphine ligands and nonamethylferrocene were developed.
Collapse
Affiliation(s)
- James C Lansing
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - James M Camara
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - Danielle E Gray
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Fischer S, Hollmann D, Tschierlei S, Karnahl M, Rockstroh N, Barsch E, Schwarzbach P, Luo SP, Junge H, Beller M, Lochbrunner S, Ludwig R, Brückner A. Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catal 2014. [DOI: 10.1021/cs500387e] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Steffen Fischer
- Institute
of Chemistry, Department Physical Chemistry, University of Rostock, Dr. Lorenz-Weg 1, 18059 Rostock, Germany
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Dirk Hollmann
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Stefanie Tschierlei
- Institute
of Physics, University of Rostock, Universitätsplatz 3, 18055 Rostock, Germany
| | - Michael Karnahl
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Enrico Barsch
- Institute
of Chemistry, Department Physical Chemistry, University of Rostock, Dr. Lorenz-Weg 1, 18059 Rostock, Germany
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Patrick Schwarzbach
- Institute
of Physics, University of Rostock, Universitätsplatz 3, 18055 Rostock, Germany
| | - Shu-Ping Luo
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
- State
Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Henrik Junge
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Stefan Lochbrunner
- Institute
of Physics, University of Rostock, Universitätsplatz 3, 18055 Rostock, Germany
| | - Ralf Ludwig
- Institute
of Chemistry, Department Physical Chemistry, University of Rostock, Dr. Lorenz-Weg 1, 18059 Rostock, Germany
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| | - Angelika Brückner
- Leibniz
Institute for Catalysis at the University of Rostock, Albert Einstein-Straße
29a, 18059 Rostock, Germany
| |
Collapse
|
20
|
Teramoto Y, Kubo K, Kume S, Mizuta T. Formation of a Hexacarbonyl Diiron Complex Having a Naphthalene-1,8-bis(phenylphosphido) Bridge and the Electrochemical Behavior of Its Derivatives. Organometallics 2013. [DOI: 10.1021/om4006142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuichi Teramoto
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Kazuyuki Kubo
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Shoko Kume
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Tsutomu Mizuta
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| |
Collapse
|
21
|
Alvarez MA, García ME, González R, Ruiz MA. P–C and C–C Coupling Processes in the Reactions of the Phosphinidene-Bridged Complex [Fe2(η5-C5H5)2(μ-PCy)(μ-CO)(CO)2] with Alkynes. Organometallics 2013. [DOI: 10.1021/om4005669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Angeles Alvarez
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Esther García
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Rocío González
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Miguel A. Ruiz
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
22
|
Zaffaroni R, Rauchfuss TB, Fuller A, De Gioia L, Zampella G. Contrasting Protonation Behavior of Diphosphido vs Dithiolato Diiron(I) Carbonyl Complexes. Organometallics 2012. [DOI: 10.1021/om300997s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Riccardo Zaffaroni
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Thomas B. Rauchfuss
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Amy Fuller
- Department
of Chemistry, University of Illinois, Urbana, Illinois
61801, United States
| | - Luca De Gioia
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, 20126-Milan, Italy
| |
Collapse
|
23
|
Wen HM, Wang JY, Hu MQ, Li B, Chen ZN, Chen CN. Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Dalton Trans 2012; 41:11813-9. [DOI: 10.1039/c2dt31507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Alvarez MA, García ME, González R, Ruiz MA. Reactions of the phosphinidene-bridged complexes [Fe2(η5-C5H5)2(μ-PR)(μ-CO)(CO)2] (R = Cy, Ph) with electrophiles based on p-block elements. Dalton Trans 2012; 41:14498-513. [DOI: 10.1039/c2dt31506h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|