1
|
Bubas AR, Tatosian IJ, Iacovino A, Corcovilos TA, van Stipdonk MJ. Reactions of gas-phase uranyl formate/acetate anions: reduction of carboxylate ligands to aldehydes by intra-complex hydride attack. Phys Chem Chem Phys 2024; 26:12753-12763. [PMID: 38619367 DOI: 10.1039/d4cp00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In a previous study, electrospray ionization, collision-induced dissociation (CID), and gas-phase ion-molecule reactions were used to create and characterize ions derived from homogeneous precursors composed of a uranyl cation (UVIO22+) coordinated by either formate or acetate ligands [E. Perez, C. Hanley, S. Koehler, J. Pestok, N. Polonsky and M. Van Stipdonk, Gas phase reactions of ions derived from anionic uranyl formate and uranyl acetate complexes, J. Am. Soc. Mass Spectrom., 2016, 27, 1989-1998]. Here, we describe a follow-up study of anionic complexes that contain a mix of formate and acetate ligands, namely [UO2(O2C-CH3)2(O2C-H)]- and [UO2(O2C-CH3)(O2C-H)2]-. Initial CID of either anion causes decarboxylation of a formate ligand to create carboxylate-coordinated U-hydride product ions. Subsequent CID of the hydride species causes elimination of acetaldehyde or formaldehyde, consistent with reactions that include intra-complex hydride attack upon bound acetate or formate ligands, respectively. Density functional theory (DFT) calculations reproduce the experimental observations, including the favored elimination of formaldehyde over acetaldehyde by hydride attack during CID of [UO2(H)(O2C-CH3)(O2C-H)]-. We also discovered that MSn CID of the acetate-formate complexes leads to generation of the oxyl-methide species, [UO2(O)(CH3)]-, which reacts with H2O to generate [UO2(O)(OH)]-. DFT calculations support the observation that formation of [UO2(O)(OH)]- by elimination of CH4 is favored over H2O addition and rearrangement to create [UO2(OH)2(CH3)]-.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Anna Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Theodore A Corcovilos
- Department of Physics, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| |
Collapse
|
2
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
3
|
Xiong Z, Chen X, Gong Y. Mass spectrometric and theoretical study on the formation of uranyl hydride from uranyl carboxylate. Phys Chem Chem Phys 2021; 23:20073-20079. [PMID: 34551043 DOI: 10.1039/d1cp03092b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranyl hydride in the form of HUO2Cl2- was prepared upon collision-induced dissociation of (RCO2)UO2Cl2- (R = H, CH3CH2, CH3CH2CH2, CH3CHCH, (CH3)2CH, C5H9, C6H11 and C6H5CH2CH2) in the gas phase. It was found that uranyl hydrides result from alkene and alkyne elimination with concomitant β-hydride transfer of uranyl alkylides RUO2Cl2- following decarboxylation of the carboxylates with the exception of (HCO2)UO2Cl2-, and formation of HUVIO2Cl2- through alkene/alkyne loss is in competition with neutral ligand loss to give UVO2Cl2-. According to the calculations at the B3LYP level, loss of a neutral ligand is slightly less favorable in the cases of (CH3CH2)UO2Cl2- and (CH3CH2CH2)UO2Cl2-, and the situations of (CH3CHCH)UO2Cl2-, ((CH3)2CH)UO2Cl2-, (C5H9)UO2Cl2-, (C6H11)UO2Cl2- and (C6H5CH2CH2)UO2Cl2- with β-hydrogen atoms should be similar despite the fact that the yield of uranyl hydride depends on the nature of the ligand. Although no uranyl hydride was observed when β-hydrogen is not available in the carboxylate precursor, there is no HUO2Cl2- generated from (C6H5CO2)UO2Cl2-, (2-C6H4FCO2)UO2Cl2- and (CH2CHCH2CO2)UO2Cl2- with β-hydrogen either. This is attributed to the much more favorable formation of UO2Cl2- over HUO2Cl2- as revealed by the B3LYP calculations, which is similar to the absence of HUO2Cl2- in the (CH3CO2)UO2Cl2- case where highly reactive CH2 would be formed.
Collapse
Affiliation(s)
- Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| |
Collapse
|
4
|
Kostyukovich AY, Burykina JV, Eremin DB, Ananikov VP. Detection and Structural Investigation of Elusive Palladium Hydride Intermediates Formed from Simple Metal Salts. Inorg Chem 2021; 60:7128-7142. [PMID: 33949864 DOI: 10.1021/acs.inorgchem.1c00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Mizoroki-Heck reaction is one of the most known and best studied catalytic transformations and has provided an outstanding driving force for the development of catalysis and synthetic applications. Three out of four classical Mizoroki-Heck catalytic cycle intermediates contain Pd-C bonds and are well known and studied in detail. However, a simple palladium hydride (which is formed after the product-releasing β-H-elimination step) is a kind of elusive intermediate in the Mizoroki-Heck reaction. In the present study, we performed a combined theoretical and mass spectrometry (MS) study of palladium hydride complexes [PdX2H]- (X = Cl, Br, and I), which are reactive intermediates in the Mizoroki-Heck reaction. Static and molecular dynamic calculations revealed that these species have a T-shaped structure with a trans-arrangement of halogen atoms. Other isomers of [PdX2H]- are unstable and easily rearrange into the T-shaped form or decompose. These palladium hydride intermediates were detected by MS in precatalyst activation using NaBH4, Et3N, and a solvent molecule as reducing agents. Online MS monitoring allowed the detection of [PdX2H]- species in the course of the Mizoroki-Heck reaction.
Collapse
Affiliation(s)
- Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia.,The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
5
|
Cheng GJ, Zhong XM, Wu YD, Zhang X. Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chem Commun (Camb) 2019; 55:12749-12764. [PMID: 31560354 DOI: 10.1039/c9cc05458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of mass spectrometry and computational chemistry has been proven to be powerful for exploring reaction mechanisms. The former provides information of reaction intermediates, while the latter gives detailed reaction energy profiles.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiu-Mei Zhong
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
6
|
Kolter M, Böck K, Karaghiosoff K, Koszinowski K. Anionic Palladium(0) and Palladium(II) Ate Complexes. Angew Chem Int Ed Engl 2017; 56:13244-13248. [PMID: 28817225 DOI: 10.1002/anie.201707362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/08/2022]
Abstract
Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br- ions to afford the anionic, zero-valent ate complex [L3 PdBr]- . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the PdII ate complex [L2 Pd(Ar)I2 ]- .
Collapse
Affiliation(s)
- Marlene Kolter
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Katharina Böck
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Kolter M, Böck K, Karaghiosoff K, Koszinowski K. Anionische Palladium(0)- und Palladium(II)-At-Komplexe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marlene Kolter
- Institut für Organische und Biomolekulare Chemie; Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Katharina Böck
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 München Deutschland
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie; Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
8
|
Lightcap J, Hester TH, Patterson D, Butler JT, Goebbert DJ. Formation of a Spin-Forbidden Product, 1[MnO 4] −, from Gas-Phase Decomposition of 6[Mn(NO 3) 3] −. J Phys Chem A 2016; 120:7071-9. [DOI: 10.1021/acs.jpca.6b06978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johnny Lightcap
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Thomas H. Hester
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Daniel Patterson
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Joseph T. Butler
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Daniel J. Goebbert
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
9
|
Albury RM, Pruitt CJM, Hester TH, Goebbert DJ. Fragmentation of Cr(NO3)4–: Metal Oxidation upon O•– Abstraction. J Phys Chem A 2015; 119:11471-8. [DOI: 10.1021/acs.jpca.5b08841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachael M. Albury
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carrie Jo M. Pruitt
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Thomas H. Hester
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daniel J. Goebbert
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
10
|
Vikse KL, Khairallah GN, Ariafard A, Canty AJ, O'Hair RAJ. Gas-Phase and Computational Study of Identical Nickel- and Palladium-Mediated Organic Transformations Where Mechanisms Proceeding via M(II) or M(IV) Oxidation States Are Determined by Ancillary Ligands. J Am Chem Soc 2015; 137:13588-93. [PMID: 26469559 DOI: 10.1021/jacs.5b08044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase studies utilizing ion-molecule reactions, supported by computational chemistry, demonstrate that the reaction of the enolate complexes [(CH2CO2-C,O)M(CH3)](-) (M = Ni (5a), Pd (5b)) with allyl acetate proceed via oxidative addition to give M(IV) species [(CH2CO2-C,O)M(CH3)(η(1)-CH2-CH═CH2)(O2CCH3-O,O')](-) (6) that reductively eliminate 1-butene, to form [(CH2CO2-C,O)M(O2CCH3-O,O')](-) (4). The mechanism contrasts with the M(II)-mediated pathway for the analogous reaction of [(phen)M(CH3)](+) (1a,b) (phen = 1,10-phenanthroline). The different pathways demonstrate the marked effect of electron-rich metal centers in enabling higher oxidation state pathways. Due to the presence of two alkyl groups, the metal-occupied d orbitals (particularly dz(2)) in 5 are considerably destabilized, resulting in more facile oxidative addition; the electron transfer from dz(2) to the C═C π* orbital is the key interaction leading to oxidative addition of allyl acetate to M(II). Upon collision-induced dissociation, 4 undergoes decarboxylation to form 5. These results provide support for the current exploration of roles for Ni(IV) and Pd(IV) in organic synthesis.
Collapse
Affiliation(s)
- Krista L Vikse
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - George N Khairallah
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Alireza Ariafard
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia.,Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University , Shahrak Gharb, Tehran 1467686831, Iran.,School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7001, Australia
| | - Allan J Canty
- School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7001, Australia
| | - Richard A J O'Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
O’Hair RAJ, Rijs NJ. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. Acc Chem Res 2015; 48:329-40. [PMID: 25594228 DOI: 10.1021/ar500377u] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONSPECTUS: Decarboxylation chemistry has a rich history, and in more recent times, it has been recruited in the quest to develop cheaper, cleaner, and more efficient bond-coupling reactions. Thus, over the past two decades, there has been intense investigation into new metal-catalyzed reactions of carboxylic substrates. Understanding the elementary steps of metal-mediated transformations is at the heart of inventing new reactions and improving the performance of existing ones. Fortunately, during the same time period, there has been a convergence in mass spectrometry (MS) techniques, which allows these catalytic processes to be examined efficiently in the gas phase. Thus, electrospray ionization (ESI) sources have been combined with ion-trap mass spectrometers, which in turn have been modified to either accept radiation from tunable OPO lasers for spectroscopy based structural assignment of ions or to allow the study of ion-molecule reactions (IMR). The resultant "complete" gas-phase chemical laboratories provide a platform to study the elementary steps of metal-catalyzed decarboxylation reactions in exquisite detail. In this Account, we illustrate how the powerful combination of ion trap mass spectrometry experiments and DFT calculations can be systematically used to examine the formation of organometallic ions and their chemical transformations. Specifically, ESI-MS allows the transfer of inorganic carboxylate complexes, [RCO2M(L)n](x), (x = charge) from the condensed to the gas phase. These mass selected ions serve as precursors to organometallic ions [RM(L)n](x) via neutral extrusion of CO2, accessible by slow heating in the ion trap using collision induced dissociation (CID). This approach provides access to an array of organometallic ions with well-defined stoichiometry. In terms of understanding the decarboxylation process, we highlight the role of the metal center (M), the organic group (R), and the auxiliary ligand (L), along with cluster nuclearity, in promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These "unmasked" organometallic ions, [RM(L)n](x), can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acid-base and hydrolysis reactions, along with reactions resulting in C-C bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions.
Collapse
Affiliation(s)
- Richard A. J. O’Hair
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole J. Rijs
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
12
|
Li J, Khairallah GN, O’Hair RAJ. Dimethylcuprate-Mediated Transformation of Acetate to Dithioacetate. Organometallics 2015. [DOI: 10.1021/om501117p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiawei Li
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - George N. Khairallah
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School
of Chemistry, Bio21
Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry
and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
O'Hair RAJ, Canale V, Zavras A, Khairallah GN, d'Alessandro N. Gas-phase reactions of the rhenium oxide anions, [ReOx]- (x = 2 - 4) with the neutral organic substrates methane, ethene, methanol and acetic acid. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:557-568. [PMID: 26307735 DOI: 10.1255/ejms.1332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ion-molecule reactions of the rhenium oxide anions, [ReOx](-) (x = 2 - 4) with the organic substrates methane, ethene, methanol and acetic acid have been examined in a linear ion trap mass spectrometer. The only reactivity observed was between [ReO(2)](-) and acetic acid. Isotope labelled experiments and high-resolution mass spectrometry measurements were used to assign the formulas of the ionic products. Collision-induced dissociation and ion-molecule reactions with acetic acid were used to probe the structures of the mass-selected primary product ions. Density functional theory calculations [PBE0/LanL2DZ6-311+G(d)] were used to suggest possible structures. The three primary product channels observed are likely to arise from the formation of: the metallalactone [ReO(2)(CH(2)CO(2))](-) (m/z 277) and H(2); [CH(3)ReO(2)(OH)](-) (m/z 251) and CO; and [ReO(3)](-) (m/z 235), H(2) and CH(2)CO.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. ARC Centre of Excellence for Free Radical Chemistry and Biotechnology.
| | - Valentino Canale
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. ARC Centre of Excellence for Free Radical Chemistry and Biotechnology. Department of Engineering and Geology (INGEO), "G. d'Annunzio" University of Chieti and Pescara, Viale Pindaro, 42, I- 65127 Pescara, Italy.
| | - Athanasios Zavras
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. ARC Centre of Excellence for Free Radical Chemistry and Biotechnology.
| | - George N Khairallah
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. ARC Centre of Excellence for Free Radical Chemistry and Biotechnology.
| | - Nicola d'Alessandro
- Department of Engineering and Geology (INGEO), "G. d'Annunzio" University of Chieti and Pescara, Viale Pindaro, 42, I- 65127 Pescara, Italy.
| |
Collapse
|
14
|
Li J, Khairallah GN, Steinmetz V, Maitre P, O'Hair RAJ. Copper mediated decyano decarboxylative coupling of cyanoacetate ligands: Pesci versus Lewis acid mechanism. Dalton Trans 2015; 44:9230-40. [DOI: 10.1039/c5dt00942a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of gas-phase ion trap multistage mass spectrometry (MSn) experiments and density functional theory (DFT) calculations have been used to examine the mechanisms of the sequential decomposition reactions of copper cyanoacetate anions, [(NCCH2CO2)2Cu]−.
Collapse
Affiliation(s)
- Jiawei Li
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| | - George N. Khairallah
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- UMR8000 CNRS
- Université Paris-Sud
- Orsay
- France
| | - Philippe Maitre
- Laboratoire de Chimie Physique
- UMR8000 CNRS
- Université Paris-Sud
- Orsay
- France
| | - Richard A. J. O'Hair
- School of Chemistry
- University of Melbourne
- Australia
- Bio21 Institute of Molecular Science and Biotechnology
- The University of Melbourne
| |
Collapse
|
15
|
Woolley M, Khairallah GN, da Silva G, Donnelly PS, O’Hair RAJ. Direct versus Water-Mediated Protodecarboxylation of Acetic Acid Catalyzed by Group 10 Carboxylates, [(phen)M(O2CCH3)]+. Organometallics 2014. [DOI: 10.1021/om500493w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Woolley
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - George N. Khairallah
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul S. Donnelly
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, ‡Bio21 Institute of Molecular Science
and Biotechnology, §ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, and ∥Department of Chemical and Biomolecular
Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
16
|
Bodo E, Ciavardini A, Dalla Cort A, Giannicchi I, Yafteh Mihan F, Fornarini S, Vasile S, Scuderi D, Piccirillo S. Anion Recognition by Uranyl-Salophen Derivatives as Probed by Infrared Multiple Photon Dissociation Spectroscopy and Ab Initio Modeling. Chemistry 2014; 20:11783-92. [DOI: 10.1002/chem.201402788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/02/2014] [Indexed: 11/11/2022]
|
17
|
Mayeux C, Massi L, Gal JF, Charles L, Burk P. Catalytic Effect of Cesium Cation Adduct Formation on the Decarboxylation of Carboxylate Ions in the Gas Phase. Chemistry 2013; 20:815-23. [DOI: 10.1002/chem.201303669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Indexed: 01/22/2023]
|
18
|
Woolley MJ, Khairallah GN, da Silva G, Donnelly PS, Yates BF, O’Hair RAJ. Role of the Metal, Ligand, and Alkyl/Aryl Group in the Hydrolysis Reactions of Group 10 Organometallic Cations [(L)M(R)]+. Organometallics 2013. [DOI: 10.1021/om400358q] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Matthew J. Woolley
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science
and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - George N. Khairallah
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science
and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Paul S. Donnelly
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science
and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Brian F. Yates
- School of Chemistry, University of Tasmania, Private Bag 75 Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Free
Radical Chemistry and Biotechnology, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science
and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|