1
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Liu C, Wang Y. A ruthenium nanocatalyst for the atmospheric hydrogenation of 1,5-cyclooctadiene. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221092945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A ruthenium nanocatalyst is utilized for the first time for the highly efficient and selective hydrogenation of 1,5-cyclooctadiene under atmospheric hydrogen pressure. Under the optimized reaction conditions, the conversion of 1,5-cyclooctadiene and the selectivity for cyclooctene are >99% and 95%, respectively. The turnover frequency is 451 h−1, which is higher than that ever reported for Ru complex catalysts.
Collapse
Affiliation(s)
- Chuanchao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P.R. China
| | - Yanhua Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P.R. China
| |
Collapse
|
3
|
Selan OTE, Cheah MH, Abrahams BF, Gable RW, Best SP. Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compounds†. Aust J Chem 2022. [DOI: 10.1071/ch21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Rahaman A, Lisensky GC, Haukka M, Tocher DA, Richmond MG, Colbran SB, Nordlander E. Proton reduction by phosphinidene-capped triiron clusters. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
6
|
Lee K, Moore CE, Thomas CM. Synthesis of Ni(II) Complexes Supported by Tetradentate Mixed-Donor Bis(amido)/Phosphine/Phosphido Ligands by Phosphine Substituent Elimination. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Shimamura T, Maeno Y, Kubo K, Kume S, Greco C, Mizuta T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans 2019; 48:16595-16603. [PMID: 31651000 DOI: 10.1039/c9dt03427g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge. The molecular structure of 3 indicated that the trigonal plane of the NEt2 group was forced to face the Fe-Fe bond to avoid steric congestion with the naphthylene group linking the two phosphide groups. The NEt2 group could be protonated by p-toluenesulfonic acid. Density functional theory (DFT) calculations confirmed that the proton of the N(H)Et2 group adopted a position close to the bridging hydride. The DFT results for the ferrocene analogue 1, in which the 1,8-naphthylene group of 3 was replaced with the 1,1'-ferrocenylene group, also revealed that the most stable orientation of the protonated NHEt2 group was that in the protonated 3. As a result, electrochemical proton reduction reactions using complexes 1 and 3 proceeded with similar catalytic efficiencies. Unfortunately, the catalytic efficiencies (CEs) of these complexes were much lower than those of the complexes with a proton relay system of the terminal hydrogen, indicating that the reactive properties of the bridging hydride in the present proton relay system cannot exceed those of the terminal hydride.
Collapse
Affiliation(s)
- Takehiko Shimamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Izod K, Evans P, Downie TH, McFarlane W, Waddell PG. Influence of Chain Length on the Structures and Dynamic Behavior of Alkyl-Tethered α,ω-Diphosphide Complexes of Lithium and Their Use in the Synthesis of P-Heterocyclic Stannylenes. Inorg Chem 2018; 57:14733-14747. [DOI: 10.1021/acs.inorgchem.8b02510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith Izod
- Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Evans
- Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Thomas Horsley Downie
- Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - William McFarlane
- Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Paul G. Waddell
- Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
10
|
Yu X, Pang M, Zhang S, Hu X, Tung CH, Wang W. Terminal Thiolate-Dominated H/D Exchanges and H2 Release: Diiron Thiol–Hydride. J Am Chem Soc 2018; 140:11454-11463. [DOI: 10.1021/jacs.8b06996] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Yu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Maofu Pang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Shengnan Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Xinlong Hu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Rahaman A, Gimbert-Suriñach C, Ficks A, Ball GE, Bhadbhade M, Haukka M, Higham L, Nordlander E, Colbran SB. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Dalton Trans 2017; 46:3207-3222. [PMID: 28221379 DOI: 10.1039/c6dt01494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the substitution, orientation and structure of the phosphido bridges in [Fe2(CO)6(μ-PR2)2] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe2(CO)6{μ-P(Ar)H}2] (1a(Ar): Ar = Ph, 2'-methoxy-1,1'-binaphthyl (bn')), e,e-[Fe2(CO)6{μ-P(Ar)H}2] (1b(Ar): Ar = Ph, bn') were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe3(CO)9(μ-CO)(μ3-Pbn')] (2) and [Fe3(CO)9(μ3-PAr)2] (3(Ar), Ar = Ph, bn'). A ferrocenyl (Fc)-substituted dimer [Fe2(CO)6{μ:μ'-1,2-(P(CH2Fc)CH2)2C6H4}] (4), in which the two phosphido bridges are linked by an o-xylyl group, was also prepared. The molecular structures of complexes 1a(Ph), 1b(Ph), 1b(bn'), 2 and 4 were established by X-ray crystallography. All complexes have been examined as electrocatalysts for proton reduction using p-toluene sulfonic acid in tetrahydrofuran. Cyclic voltammograms of the dimers with acid exhibit two catalysis waves for proton reduction. The first wave, which appears at the potential of the primary reduction, reaches maximum current (turnover) at moderate acid concentrations and is rapidly overtaken by the second wave, which appears at more negative potential. Both of these reductive waves show an initial first order dependence on acid. The electrochemistry and electrocatalyses of the [Fe2(CO)6(μ-PR2)2] dimers show subtle variations with the nature of the bridging phosphido group(s), including the orientation of bridgehead hydrogen atoms.
Collapse
Affiliation(s)
- Ahibur Rahaman
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | | | - Arne Ficks
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Graham E Ball
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mohan Bhadbhade
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland
| | - Lee Higham
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | - Stephen B Colbran
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Biomimetics of the [FeFe]-hydrogenase enzyme: Identification of kinetically favoured apical-basal [Fe2(CO)4(μ-H){κ2-Ph2PC(Me2)PPh2}(μ-pdt)]+ as a proton-reduction catalyst. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.09.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Liu YC, Chu KT, Huang YL, Hsu CH, Lee GH, Tseng MC, Chiang MH. Protonation/Reduction of Carbonyl-Rich Diiron Complexes and the Direct Observation of Triprotonated Species: Insights into the Electrocatalytic Mechanism of Hydrogen Formation. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Chiao Liu
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kai-Ti Chu
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Molecular
Science and Technology Program, TIGP, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Lan Huang
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Cheng-Huey Hsu
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Chun Tseng
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ming-Hsi Chiang
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Molecular
Science and Technology Program, TIGP, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
15
|
Abstract
Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.
Collapse
Affiliation(s)
- Robert H Morris
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
16
|
Song LC, Gu ZC, Zhang WW, Li QL, Wang YX, Wang HF. Synthesis, Structure, and Electrocatalysis of Butterfly [Fe2SP] Cluster Complexes Relevant to [FeFe]-Hydrogenases. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Zhen-Chao Gu
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Wei-Wei Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Qian-Li Li
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Yong-Xiang Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Hong-Fa Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry, and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Synthesis, crystal structure and electrochemical study of (μ-κ2C:κ2S-NHC+-CS)[Fe2(CO)6]− generated from the reaction of NHC+-CS2− with Fe3(CO)12. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Rauchfuss TB. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc Chem Res 2015; 48:2107-16. [PMID: 26079848 DOI: 10.1021/acs.accounts.5b00177] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe] hydrogenases (H2ases) catalyze the redox reaction that interconverts protons and H2. This area of biocatalysis has attracted attention because the metal-based chemistry is unusual, and the reactions have practical implications. The active site consists of a [4Fe-4S] cluster bridged to a [Fe2(μ-dithiolate)(CN)2(CO)3](z) center (z = 1- and 2-). The dithiolate cofactor is [HN(CH2S)2](2-), called the azadithiolate ([adt(H)](2-)). Although many derivatives of Fe2(SR)2(CO)6-xLx are electrocatalysts for the hydrogen evolution reaction (HER), most operate by slow nonbiomimetic pathways. Biomimetic hydrogenogenesis is thought to involve intermediates, wherein the hydride substrate is adjacent to the amine of the adt(H), being bonded to only one Fe center. Formation of terminal hydride complexes is favored when the diiron carbonyl models contain azadithiolate. Although unstable in the free state, the adt cofactor is stable once it is affixed to the Fe2 center. It can be prepared by alkylation of Fe2(SH)2(CO)6 with formaldehyde in the presence of ammonia (to give adt(H) derivatives) or amines (to give adt(R) derivatives). Weak acids protonate Fe2(adt(R))(CO)2(PR3)4 to give terminal hydrido (term-H) complexes. In contrast, protonation of the related 1,3-propanedithiolate (pdt(2-)) complexes Fe2(pdt)(CO)2(PR3)4 requires strong acids. The amine in the azadithiolate is a kinetically fast base, relaying protons to and from the iron, which is a kinetically slow base. The crystal structure of the doubly protonated model [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) confirms the presence of both ammonium and terminal hydrido centers, which interact through a dihydrogen bond (dppv = cis-C2H2(PPh2)2). DFT calculations indicate that this H---H interaction is sensitive to the counterions and is strengthened upon reduction of the diiron center. For the monoprotonated models, the hydride [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) exists in equilibrium with the ammonium tautomer [Fe2(Hadt(H))(CO)2(dppv)2](+). Both [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) and [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) are highly active electrocatalysts for HER. Catalysis is initiated by reduction of the diferrous center, which induces coupling of the protic ammonium center and the hydride ligand. In contrast, the propanedithiolate [(term-H)Fe2(pdt)(CO)2(dppv)2](+) is a poor electrocatalyst for HER. Oxidation of H2 has been demonstrated, starting with models for the oxidized state ("Hox"), for example, [Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Featuring a distorted Fe(II)Fe(I) center, this Hox model reacts slowly with high pressures of H2 to give [(μ-H)Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Highlighting the role of the proton relay, the propanedithiolate [Fe2(pdt)(CO)3(dppv)(PMe3)](+) is unreactive toward H2. The Hox-model + H2 reaction is accelerated in the presence of ferrocenium salts, which simulate the role of the attached [4Fe-4S] cluster. The redox-complemented complex [Fe2(adt(Bn))(CO)3(dppv)(FcP*)](n+) catalyzes both proton reduction and hydrogen oxidation (FcP* = (C5Me5)Fe(C5Me4CH2PEt2)).
Collapse
Affiliation(s)
- Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Mazzoni R, Gabiccini A, Cesari C, Zanotti V, Gualandi I, Tonelli D. Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Alberto Gabiccini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4; 40136 Bologna, Italy
| |
Collapse
|
20
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
21
|
Shi YC, Yang W, Shi Y, Cheng DC. Syntheses, crystal structures, and electrochemical studies of Fe2(CO)6(μ-PPh2)(μ-L) (L = OH, OPPh2, PPh2). J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.940925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yao-Cheng Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Wei Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Ying Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Da-Cong Cheng
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
22
|
Mathur P, Rai DK, Joshi RK, Jha B, Mobin SM. Synthesis of Novel Allene-Coordinated, Phosphido-Bridged Ru2Pt Clusters Involving Enyne to Allene Transformation. Organometallics 2014. [DOI: 10.1021/om500561b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pradeep Mathur
- School
of Sciences, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India
| | - Dhirendra K. Rai
- School
of Sciences, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India
| | - Raj K. Joshi
- Department
of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | | | - Shaikh M. Mobin
- School
of Sciences, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India
| |
Collapse
|
23
|
The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster. Nat Chem 2014; 6:336-42. [PMID: 24651202 DOI: 10.1038/nchem.1892] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Nature is a valuable source of inspiration in the design of catalysts, and various approaches are used to elucidate the mechanism of hydrogenases, the enzymes that oxidize or produce H2. In FeFe hydrogenases, H2 oxidation occurs at the H-cluster, and catalysis involves H2 binding on the vacant coordination site of an iron centre. Here, we show that the reversible oxidative inactivation of this enzyme results from the binding of H2 to coordination positions that are normally blocked by intrinsic CO ligands. This flexibility of the coordination sphere around the reactive iron centre confers on the enzyme the ability to avoid harmful reactions under oxidizing conditions, including exposure to O2. The versatile chemistry of the diiron cluster in the natural system might inspire the design of novel synthetic catalysts for H2 oxidation.
Collapse
|
24
|
Teramoto Y, Kubo K, Kume S, Mizuta T. Formation of a Hexacarbonyl Diiron Complex Having a Naphthalene-1,8-bis(phenylphosphido) Bridge and the Electrochemical Behavior of Its Derivatives. Organometallics 2013. [DOI: 10.1021/om4006142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuichi Teramoto
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Kazuyuki Kubo
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Shoko Kume
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| | - Tsutomu Mizuta
- Department
of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan
| |
Collapse
|
25
|
Nguyen AD, Rail MD, Shanmugam M, Fettinger JC, Berben LA. Electrocatalytic Hydrogen Evolution from Water by a Series of Iron Carbonyl Clusters. Inorg Chem 2013; 52:12847-54. [DOI: 10.1021/ic4023882] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- An D. Nguyen
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - M. Diego Rail
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Maheswaran Shanmugam
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A. Berben
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|