1
|
Novel Non-Toxic Highly Antibacterial Chitosan/Fe(III)-Based Nanoparticles That Contain a Deferoxamine—Trojan Horse Ligands: Combined Synthetic and Biological Studies. Processes (Basel) 2023. [DOI: 10.3390/pr11030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
In this study, we prepared chitosan/Fe(III)/deferoxamine nanoparticles with unimodal size distribution (hydrodynamic diameter ca. 250 nm, zeta potential ca. 32 mV). The elaborated nanoparticles are characterized by outstanding in vitro and in vivo antibacterial activity, which exceeds even that of commercial antibiotics ampicillin and gentamicin. Moreover, the nanoparticles are non-toxic. We found that the introduction of iron ions into the chitosan matrix increases the ability of the resulting nanoparticles to disrupt the integrity of the membranes of microorganisms in comparison with pure chitosan. The introduction of deferoxamine into the obtained nanoparticles sharply expands their effect of destruction the bacterial membrane. The obtained antibacterial nanoparticles are promising for further preclinical studies.
Collapse
|
2
|
Novel Highly Efficient Green and Reusable Cu(II)/Chitosan-Based Catalysts for the Sonogashira, Buchwald, Aldol, and Dipolar Cycloaddition Reactions. Catalysts 2023. [DOI: 10.3390/catal13010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated systems in various organic transformations were evaluated. The use of copper sulfate as the source of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the generation of conventional coarse-grained powder. Cholesterol-containing systems have proven to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira, Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions proceed selectively, and the isolation of the product does not require column chromatography. The product is separated from the catalyst by simple filtration or centrifugation.
Collapse
|
3
|
Towards Anion Recognition and Precipitation with Water-Soluble 1,2,4-Selenodiazolium Salts: Combined Structural and Theoretical Study. Int J Mol Sci 2022; 23:ijms23126372. [PMID: 35742815 PMCID: PMC9224156 DOI: 10.3390/ijms23126372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The synthesis and structural characterization of a series of supramolecular complexes of bicyclic cationic pyridine-fused 1,2,4-selenodiazoles with various anions is reported. The binding of trifluoroacetate, tetrachloroaurate, tetraphenylborate, perrhenate, and pertechnetate anions in the solid state is regarded. All the anions interact with selenodiazolium cations exclusively via a pair of “chelating” Se⋯O and H⋯O non-covalent interactions, which make them an attractive, novel, non-classical supramolecular recognition unit or a synthon. Trifluoroacetate salts were conveniently generated via novel oxidation reaction of 2,2′-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene in the presence of corresponding nitriles. Isolation and structural characterization of transient 2-pyridylselenyl trifluoroacetate was achieved. X-ray analysis has demonstrated that the latter forms dimers in the solid state featuring very short and strong Se⋯O and Se⋯N ChB contacts. 1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In contrast, (AuCl4)−, (ReO4)−, or (TcO4)− derivatives immediately precipitate from aqueous solutions. Structural features of these supramolecular complexes in the solid state are discussed. The nature and energies of the non-covalent interactions in novel assembles were studied by the theoretical methods. To the best of our knowledge, this is the first study that regards perrhenate and pertechnetate as acceptors in ChB interactions. The results presented here will be useful for further developments in anion recognition and precipitation involving cationic 1,2,4-selenodiazoles.
Collapse
|
4
|
Egorov AR, Khubiev O, Rubanik VV, Rubanik VV, Lobanov NN, Savilov SV, Kirichuk AA, Kritchenkov IS, Tskhovrebov AG, Kritchenkov AS. The first selenium containing chitin and chitosan derivatives: Combined synthetic, catalytic and biological studies. Int J Biol Macromol 2022; 209:2175-2187. [PMID: 35513092 DOI: 10.1016/j.ijbiomac.2022.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022]
Abstract
Ultrasonic approach to the synthesis of the first selenium-containing derivatives of chitin and chitosan has been developed. The synthetic procedure is simple, provides high yields, does not require harsh conditions, and uses water as the reaction medium. The elaborated chitin and chitosan derivatives and their based nanoparticles are non-toxic and possess high antibacterial and antifungal activity. Their antimicrobial activity exceeds the effect of the classic antibiotics (Ampicillin and Gentamicin) and the antifungal drug Amphotericin B. The obtained selenium-containing cationic chitin and chitosan derivatives exhibit a high transfection activity and are promising gene delivery vectors. Nanoparticles of the synthesized polymers are highly efficient catalysts for the oxidation of 1-phenylethyl alcohol to acetophenone by bromine at room temperature.
Collapse
Affiliation(s)
- Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Omar Khubiev
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Serguei V Savilov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Alexander G Tskhovrebov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| |
Collapse
|
5
|
Setifi Z, Setifi F, Glidewell C, Gil DM, Kletskov AV, Echeverria J, Mirzaei M. An iron(II) complex of trans, trans, trans-bis(azido)bis(4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole): Insight into molecular and supramolecular structures using Hirshfeld surface analysis and DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kritchenkov AS, Egorov AR, Abramovich RA, Kurliuk AV, Shakola TV, Kultyshkina EK, Ballesteros Meza MJ, Pavlova AV, Suchkova EP, Le Nhat Thuy G, Van Tuyen N, Khrustalev VN. Water-soluble triazole chitin derivative and its based nanoparticles: Synthesis, characterization, catalytic and antibacterial properties. Carbohydr Polym 2021; 257:117593. [PMID: 33541634 DOI: 10.1016/j.carbpol.2020.117593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Rimma A Abramovich
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Ekaterina K Kultyshkina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Moises J Ballesteros Meza
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Anastasia V Pavlova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Elena P Suchkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation
| | - Giang Le Nhat Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
7
|
Ultrasound and click chemistry lead to a new chitin chelator. Its Pd(II) complex is a recyclable catalyst for the Sonogashira reaction in water. Carbohydr Polym 2021; 252:117167. [PMID: 33183618 DOI: 10.1016/j.carbpol.2020.117167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022]
Abstract
For the first time the possibility of chitin use as an accessible and easily-modifiable support for an efficient Pd(II) catalyst has been demonstrated. The modification of chitin avoiding a noticeable chain scission or deacetylation, is achieved by sonochemical alkylation with 1-azido-3-chloropropan-2-ol followed by a convenient azido-alkyne click reaction. The obtained polymer represents an extremely rare case of the chitin derivative soluble both in water and organic solvents. The treatment of that derivative with imino-isonitrile Pd(II) complex solution yielded a chitin-supported Pd(II) complex. The latter could be obtained as a powder or as uniform nanoparticles in different size ranges. The nanoparticles with a hydrodynamic diameter of 30 nm were shown to be the most efficient form of catalyst for the copper- and phosphine-free Sonogashira cross-coupling in water.
Collapse
|
8
|
Kritchenkov AS, Egorov AR, Volkova OV, Artemjev AA, Kurliuk AV, Anh Le T, Hieu Truong H, Le-Nhat-Thuy G, Van Tran Thi T, Van Tuyen N, Khrustalev VN. Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chem 2020; 343:128676. [PMID: 33250292 DOI: 10.1016/j.foodchem.2020.128676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/07/2023]
Abstract
We used nanoparticles which possess simultaneously active (antimicrobial, UV-protective and antioxidant) and smart (temperature sensing) properties. The nanoparticles (2Rh = 450 nm, PDI = 0.118 ± 0.014, ζ-potential = 21 mV and Tg = 8 ± 1 °C) are based on polyethylene glycol (PEG)/methyl cellulose (MC) core with anthocyanidin and sodium acetate, and chitosan/gallotannin-based shell. The core of nanoparticles acts as a temperature indicator, changing its color from colorless into deep purple at 8 °C, while the shell provides antimicrobial (due to chitosan), UV-protective and antioxidant (due to gallotannin) effects. We incorporated these nanoparticles into the chitosan matrix. The coatings demonstrated improved mechanical and barrier properties compared with the pure chitosan coating. The elaborated coatings pronouncedly improve the shelf-life of Ricotta cheese. Moreover, they serve as thermo indicators, which warn about cheese storage at an unacceptable temperature. Thus, we developed new coatings in which all properties are enabled by a single type of nanoparticles.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tuan Anh Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Hong Hieu Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Thanh Van Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
9
|
Kritchenkov AS, Kurachenkov AI, Egorov AR, Yagafarov NZ, Fortalnova EA, Lobanov NN, Dysin AP, Khomik AS, Khrustalev VN. Novel zinc(II)/chitosan-based composite: ultrasound-assisted synthesis, catalytic and antibacterial activity. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Novel heterocyclic chitosan derivatives and their derived nanoparticles: Catalytic and antibacterial properties. Int J Biol Macromol 2020; 149:682-692. [DOI: 10.1016/j.ijbiomac.2019.12.277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
|
11
|
Kritchenkov AS, Egorov AR, Krytchankou IS, Dubashynskaya NV, Volkova OV, Shakola TV, Kurliuk AV, Skorik YA. Synthesis of novel 1H-tetrazole derivatives of chitosan via metal-catalyzed 1,3-dipolar cycloaddition. Catalytic and antibacterial properties of [3-(1H-tetrazole-5-yl)ethyl]chitosan and its nanoparticles. Int J Biol Macromol 2019; 132:340-350. [DOI: 10.1016/j.ijbiomac.2019.03.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
|
12
|
Platinum(II)-mediated aminonitrone–isocyanide interplay: A new route to acyclic diaminocarbene complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
Kuznetsov ML, Kukushkin VY. Diversity of reactivity modes upon interplay between Au(iii)-bound isocyanides and cyclic nitrones: a theoretical consideration. Dalton Trans 2017; 46:786-802. [PMID: 28001162 DOI: 10.1039/c6dt03840a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-bound isocyanides demonstrate a very rich chemistry towards 1,3-dipoles of the allyl anion type such as nitrones. Depending on the metal centre, dipole nature and substituent in isocyanides, cycloadducts, imine + isocyanates or metallacycles may be formed. In this work, the reasons for such diversity, intimate details of the reaction mechanism and main factors determining the chemoselectivity in the reaction between Au(iii)-bound isocyanides ([AuCl3(C[triple bond, length as m-dash]NR)]) and cyclic nitrones -O-N[combining low line]+[double bond, length as m-dash]C(H)XXX[combining low line] (XXX = CH2CH2CMe2, CH2CH2CH2, OCH2CMe2, CH2OCMe2 and CH2CH2O) are analysed in detail by theoretical (DFT) methods. The formation of cycloadducts is controlled by the LUMOπ*(C[triple bond, length as m-dash]N) of isocyanides and it occurs in a stepwise manner via the initial nucleophilic addition of nitrone at the C atom of C[triple bond, length as m-dash]NR (except for nitronate -O-N[combining low line]+[double bond, length as m-dash]C(H)CH2CH2O[combining low line]). The imine + isocyanate products are formed upon oxygen transfer from nitrones to isocyanides, and N-O bond cleavage is the main factor determining this process. A metallacycle is formed upon decomposition of the cycloadduct, and this process includes deprotonation of the oxadiazoline CH group/N-O bond cleavage and Cl- elimination/cyclization. The main factor controlling the metallacycle formation is the acidity of the endocyclic CH group in the cycloadduct. Effects of the substituent R in C[triple bond, length as m-dash]NR and the nitrone nature on the reactivity are analysed.
Collapse
Affiliation(s)
- Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. and International Group on Organometallic Chemistry, Institute of Chemistry, Saint Petersburg State University, 199034, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- International Group on Organometallic Chemistry, Institute of Chemistry, Saint Petersburg State University, 199034, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
15
|
Melekhova AA, Novikov AS, Bokach NA, Avdonceva MS, Kukushkin VY. Characterization of Cu-ligand bonds in tris-pyrazolylmethane isocyanide copper(I) complexes based upon combined X-ray diffraction and theoretical study. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Kinzhalov MA, Novikov AS, Luzyanin KV, Haukka M, Pombeiro AJL, Kukushkin VY. PdII-mediated integration of isocyanides and azide ions might proceed via formal 1,3-dipolar cycloaddition between RNC ligands and uncomplexed azide. NEW J CHEM 2016. [DOI: 10.1039/c5nj02564h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of (tetrazolate)PdII complexes via the integration of (isocyanide)PdII precursors with uncomplexed azides and the verification of plausible reaction mechanisms.
Collapse
Affiliation(s)
| | | | - Konstantin V. Luzyanin
- St. Petersburg State University
- St. Petersburg
- Russia
- Department of Chemistry
- University of Liverpool
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- Finland
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | | |
Collapse
|
17
|
Bolotin DS, Demakova MY, Novikov AS, Avdontceva MS, Kuznetsov ML, Bokach NA, Kukushkin VY. Bifunctional reactivity of amidoximes observed upon nucleophilic addition to metal-activated nitriles. Inorg Chem 2015; 54:4039-46. [PMID: 25822628 DOI: 10.1021/acs.inorgchem.5b00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of the aromatic nitrile complexes trans-[PtCl2(RC6H4CN)2] (R = p-CF3 NC1, H NC2, o-Cl NC3) with the aryl amidoximes p-R'C6H4C(NH2)=NOH (R' = Me AO1, H AO2, Br AO3, CF3 AO4, NO2 AO5) in all combinations, followed by addition of 1 equiv of AgOTf and then 5 equiv of Et3N, leads to the chelates [PtCl{HN=C(RC6H4)ON=C(C6H4R'-p)NC(RC6H4)═NH}] (1-15; 15 examples; yields 71-88% after column chromatography) derived from the platinum(II)-mediated coupling between metal-activated nitriles and amidoximes. The mechanism of this reaction was studied experimentally by trapping and identification of the reaction intermediates, and it was also investigated theoretically at the DFT level of theory. The combined experimental and theoretical results indicate that the coupling with the nitrile ligands involves both the HON and monodeprotonated NH2 groups of the amidoximes, whereas in the absence of the base, the NH2 functionality is inactive toward the coupling. The observed reaction represents the first example of bifunctional nucleophilic behavior of amidoximes. The complexes 1-16 were characterized by elemental analyses (C, H, N), high-resolution ESI(+)-MS, FTIR, and (1)H NMR techniques, whereas unstable 17 was characterized by HRESI(+)-MS and FTIR. In addition, 8·C4H8O2, 12, and 16·CHCl3 were studied by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- †Institute of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
| | - Marina Ya Demakova
- †Institute of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
| | - Alexander S Novikov
- †Institute of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
| | - Margarita S Avdontceva
- ‡Institute of Earth Sciences, Saint Petersburg State University, University Emb. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Maxim L Kuznetsov
- §Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nadezhda A Bokach
- †Institute of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
| | - Vadim Yu Kukushkin
- †Institute of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation.,∥Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O. Bolshoii Pr. 31, 199004 Saint Petersburg, Russian Federation
| |
Collapse
|
18
|
Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Metal-Mediated and Metal-Catalyzed Reactions of Isocyanides. Chem Rev 2015; 115:2698-779. [DOI: 10.1021/cr500380d] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 198504 Stary Petergof, Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 198504 Stary Petergof, Russian Federation
| | - Konstantin V. Luzyanin
- Institute of Chemistry, Saint Petersburg State University, 198504 Stary Petergof, Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 198504 Stary Petergof, Russian Federation
| |
Collapse
|
19
|
Loose F, Plettenberg I, Haase D, Saak W, Schmidtmann M, Schäfer A, Müller T, Beckhaus R. Aromatic Imines in the Titanocene Coordination Sphere—Titanaaziridine vs 1-Aza-2-titanacyclopent-4-ene Structures. Organometallics 2014. [DOI: 10.1021/om500750y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Loose
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Inka Plettenberg
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Detlev Haase
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Wolfgang Saak
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Marc Schmidtmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - André Schäfer
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Thomas Müller
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Rüdiger Beckhaus
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| |
Collapse
|
20
|
Abdul Khader KK, Sajith AM, Syed Ali Padusha M, Nagaswarupa HP, Muralidharan A. Cycloalkenyl nonaflates as electrophilic cross-coupling substrates for palladium catalyzed C–N bond forming reactions with enolizable heterocycles under microwave enhanced conditions. NEW J CHEM 2014. [DOI: 10.1039/c3nj01355c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|