1
|
Zhang Y, Lee TS, Petersen JL, Milsmann C. Photophysical Studies of a Zr(IV) Complex with Two Pyrrolide-Based Tetradentate Schiff Base Ligands. Inorg Chem 2024; 63:9002-9013. [PMID: 38700497 PMCID: PMC11110004 DOI: 10.1021/acs.inorgchem.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The reaction of two equivalents of N,N'-bis(2-pyrrolylmethylidene)-1,2-phenylenediamine (H2bppda) with tetrabenzylzirconium provided the air- and moisture-stable eight-coordinate complex Zr(bppda)2. Temperature-dependent steady-state and time-resolved emission spectroscopy established weak photoluminescence (ΦPL = 0.4% at 293 K) by a combination of prompt fluorescence and thermally activated delayed fluorescence (TADF) upon visible light excitation at and around room temperature. TADF emission is strongly quenched by 3O2 and shows highly temperature-sensitive emission lifetimes of hundreds of microseconds. The lifetime of the lowest energy singlet excited state, S1, was established by transient absorption spectroscopy and shows rapid deactivation (τ = 142 ps) by prompt fluorescence and intersystem crossing to the triplet state, T1. Time-dependent density functional theory (TD-DFT) calculations predict moderate ligand-to-metal charge transfer (LMCT) contributions of 25-30% for the S1 and T1 states. A comparison of Zr(bppda)2 to related zirconium pyridine dipyrrolide complexes, Zr(PDP)2, revealed important electronic structure changes due to the eight-coordinate ligand environment in Zr(bppda)2, which were correlated to differences in the photophysical properties between the two compound classes.
Collapse
Affiliation(s)
- Yu Zhang
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02144, United States
| | - Tia S. Lee
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L. Petersen
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
2
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
3
|
Lamač M, Dunlop D, Lang K, Kubát P. Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Dunlop D, Večeřa M, Gyepes R, Kubát P, Lang K, Horáček M, Pinkas J, Šimková L, Liška A, Lamač M. Luminescent Cationic Group 4 Metallocene Complexes Stabilized by Pendant N-Donor Groups. Inorg Chem 2021; 60:7315-7328. [PMID: 33945274 DOI: 10.1021/acs.inorgchem.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cationic group 4 metallocene complexes with pendant imine and pyridine donor groups were prepared as stable crystalline [B(C6F5)4]- salts either by protonation of the intramolecularly bound ketimide moiety in neutral complexes [(η5-C5Me5){η5-C5H4CMe2CMe2C(R)═N-κN}MCl] (M = Ti, Zr, Hf; R = t-Bu, Ph) by PhNMe2H+[B(C6F5)4]- to give [(η5-C5Me5){η5-C5H4CMe2CMe2C(R)═NH-κN}MCl]+[B(C6F5)4]- or by chloride ligand abstraction from the complexes [(η5-C5Me5)(η5-C5H4CMe2CH2C5H4N)MCl2] (M = Ti, Zr) by Li[B(C6F5)4]·2.5Et2O to give [(η5-C5Me5)(η5-C5H4CMe2CH2C5H4N-κN)MCl]+[B(C6F5)4]-. Solid state structures of the new compounds were established by X-ray diffraction analysis, and their electrochemical behavior was studied by cyclic voltammetry. The cationic complexes of Zr and Hf, compared to the corresponding neutral species, exhibited significantly enhanced luminescence predominantly from triplet ligand-to-metal (3LMCT) excited states with lifetimes up to 62 μs and quantum yields up to 58% in the solid state. DFT calculations were performed to explain the structural features and optical and electrochemical properties of the complexes.
Collapse
Affiliation(s)
- David Dunlop
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic.,Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Praha 2, Czech Republic
| | - Miloš Večeřa
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Róbert Gyepes
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic.,Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Praha 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Michal Horáček
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Jiří Pinkas
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Ludmila Šimková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Alan Liška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Martin Lamač
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| |
Collapse
|
5
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
6
|
Zhang Y, Akhmedov NG, Petersen JL, Milsmann C. Photoluminescence of Seven-Coordinate Zirconium and Hafnium Complexes with 2,2'-Pyridylpyrrolide Ligands. Chemistry 2019; 25:3042-3052. [PMID: 30620447 DOI: 10.1002/chem.201804671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Luminescent seven-coordinated zirconium and hafnium complexes bearing three mono-anionic 2,2'-pyridylpyrrolide ligands and one chloride were synthesized. Solid-state structures and the dynamic behaviors in solution were probed by X-ray crystallography and variable temperature 1 H NMR experiments, respectively. Absorption spectroscopy and time-dependent density functional theory (TD-DFT) calculations supported a hybrid of ligand-to-metal charge transfer (LMCT)/ligand-to-ligand charge transfer (LLCT) for the visible light absorption band. The complexes (Me PMPMe )3 MCl (M=Zr, Hf, Me PMPMe =3,5-dimethyl-2-(2-pyridyl)pyrrolide) are emissive in solution at room temperature upon irradiation with visible light due to a combination of phosphorescence and fluorescence characterized by excited state lifetimes in the μs and low to sub-ns timescale, respectively. Electrochemical experiments revealed that the zirconium complex possesses a reversible redox event under highly reducing condition (-2.29 V vs. Fc+/0 ).
Collapse
Affiliation(s)
- Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, WV, 26506, USA
| | - Novruz G Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, WV, 26506, USA
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, WV, 26506, USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, WV, 26506, USA
| |
Collapse
|
7
|
Zhang Y, Petersen JL, Milsmann C. Photochemical C–C Bond Formation in Luminescent Zirconium Complexes with CNN Pincer Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
8
|
Kuhlmann L, Methling R, Simon J, Neumann B, Stammler HG, Strassert CA, Mitzel NW. Fluorescent phenoxy benzoxazole complexes of zirconium and hafnium: synthesis, structure and photo-physical behaviour. Dalton Trans 2018; 47:11245-11252. [PMID: 30058654 DOI: 10.1039/c8dt01757c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of ten heteroleptic and homoleptic mononuclear Zr(iv) and Hf(iv) complexes bearing differently substituted phenoxy-benzoxazole ligands was synthesised. The complexes were characterised by 1H and 13C{1H} NMR spectroscopy as well as by elemental analyses and X-ray diffraction experiments. The molecular structures show octahedral or tetragonal-antiprismatic coordination motifs at the metal atom. The crystal packing patterns depend on the substitution of the ligands. The intermolecular interactions in the solid state are governed by weak π-π interactions, and are also dependent on the ligand structure. Photo-physical investigations reveal that all ten complexes show a ligand-centered fluorescence with emission maxima in the blue region of the electromagnetic spectrum.
Collapse
Affiliation(s)
- Lisa Kuhlmann
- Fakultät für Chemie, Lehrstuhl für Anorganische Chemie und Strukturchemie (ACS), Centrum für molekulare Materialien CM2, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang Y, Lee TS, Petersen JL, Milsmann C. A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer. J Am Chem Soc 2018; 140:5934-5947. [PMID: 29671586 DOI: 10.1021/jacs.8b00742] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Time-resolved emission spectroscopy for the luminescent zirconium complex Zr(MePDP)2 (MePDP = 2,6-bis(5-methyl-3-phenyl-1 H-pyrrol-2-yl)pyridine) revealed a long-lived excited state with a lifetime τ = 325 ± 10 μs. Computational studies using time-dependent density functional theory were conducted to identify the nature of the luminescent excited state as a mixed triplet intraligand/ligand-to-metal charge-transfer state. Stern-Volmer experiments showed a strong dependence of the quenching rate on the redox potential of the quencher indicating photoinduced single-electron transfer (SET) as the quenching pathway. Mechanistic investigations of the photocatalytic homocoupling of benzyl bromide allowed the detection of organic radical intermediates during turnover and provided further evidence for SET mediated by Zr(MePDP)2. Isolation of the one-electron-reduced form of the photosensitizer, [Zr(MePDP)2]-, enabled studies of its electronic structure by a combination of experimental and computational techniques and confirmed its role as a strong reductant. Additionally, the role of the benzimidazolium hydride derivatives as two-electron sacrificial reductants during photoredox catalysis was investigated. In combination, the results presented in this report establish a detailed mechanistic picture of a photoredox catalytic reaction promoted by an earth-abundant early transition metal photosensitizer.
Collapse
Affiliation(s)
- Yu Zhang
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Tia S Lee
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
10
|
Marshall RJ, Kalinovskyy Y, Griffin SL, Wilson C, Blight BA, Forgan RS. Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. J Am Chem Soc 2017; 139:6253-6260. [DOI: 10.1021/jacs.7b02184] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ross J. Marshall
- WestCHEM,
School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Yaroslav Kalinovskyy
- School
of Physical Sciences, University of Kent, Ingram Building, Canterbury CT2 7NH, U.K
| | - Sarah L. Griffin
- WestCHEM,
School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Claire Wilson
- WestCHEM,
School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - Barry A. Blight
- School
of Physical Sciences, University of Kent, Ingram Building, Canterbury CT2 7NH, U.K
- Department
of Chemistry, University of New Brunswick, Toole Hall, Fredericton, NB E3B 5A3, Canada
| | - Ross S. Forgan
- WestCHEM,
School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
11
|
Khalil G, Orvain C, Fang L, Barloy L, Chaumont A, Gaiddon C, Henry M, Kyritsakas N, Mobian P. Monomeric Ti(iv)-based complexes incorporating luminescent nitrogen ligands: synthesis, structural characterization, emission spectroscopy and cytotoxic activities. Dalton Trans 2016; 45:19072-19085. [DOI: 10.1039/c6dt03477b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photoluminescent 2,2′-bipyrimidine ligands and their titanium(iv) complexes are cytotoxic.
Collapse
Affiliation(s)
- Georges Khalil
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Christophe Orvain
- Laboratoire des “Mécanismes moléculaires de la réponse au stress et pathologies”
- Strasbourg
- France
- Département Cancer
- Fédération de Médecine Translationnelle de Strasbourg
| | - Lu Fang
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Laurent Barloy
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Alain Chaumont
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Christian Gaiddon
- Laboratoire des “Mécanismes moléculaires de la réponse au stress et pathologies”
- Strasbourg
- France
- Département Cancer
- Fédération de Médecine Translationnelle de Strasbourg
| | - Marc Henry
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Nathalie Kyritsakas
- Laboratoire de Tectonique Moléculaire
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Pierre Mobian
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
12
|
Romain C, Choua S, Collin JP, Heinrich M, Bailly C, Karmazin-Brelot L, Bellemin-Laponnaz S, Dagorne S. Redox and Luminescent Properties of Robust and Air-Stable N-Heterocyclic Carbene Group 4 Metal Complexes. Inorg Chem 2014; 53:7371-6. [DOI: 10.1021/ic500718y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Charles Romain
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sylvie Choua
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean-Paul Collin
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Martine Heinrich
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Corinne Bailly
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin-Brelot
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Stéphane Bellemin-Laponnaz
- Institut
de Physique et Chimie des Matériaux de Strasbourg, CNRS UMR 7504, Université de Strasbourg, 23 rue du Loess BP43, 67034 Strasbourg, France
- Institute
for Advanced Study, Université de Strasbourg, 5 allée
du Général Rouvillois, 67083 Strasbourg, France
| | - Samuel Dagorne
- Institut
de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
13
|
Coogan MP, Fernández-Moreira V. Progress with, and prospects for, metal complexes in cell imaging. Chem Commun (Camb) 2014; 50:384-99. [DOI: 10.1039/c3cc45229h] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|