1
|
Liu Y, Zhu K, Chen L, Liu S, Ren W. Azobenzenyl Calcium Complex: Synthesis and Reactivity Studies of a Ca(I) Synthon. Inorg Chem 2022; 61:20373-20384. [DOI: 10.1021/acs.inorgchem.2c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yumiao Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kang Zhu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
3
|
Willauer AR, Fadaei-Tirani F, Zivkovic I, Sienkiewicz A, Mazzanti M. Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorg Chem 2022; 61:7436-7447. [PMID: 35505299 DOI: 10.1021/acs.inorgchem.2c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear molecular complexes of europium (II) and ytterbium(II) [Ln3{(Ph2SiO)2O}3(THF)6], 1-Ln3L3 (Ln = Eu and Yb), supported by the dianionic tetraphenyl disiloxanediolate ligand, were synthesized via protonolysis of the [Ln{N(SiMe3)2}2(THF)2] complexes. In contrast, the reaction of [Sm{N(SiMe3)2}2(THF)2] with the (Ph2SiOH)2O ligand led to the isolation of the mixed-valent Sm(II)/Sm(III) complex [Sm3{(Ph2SiO)2O}3{N(SiMe3)2}(THF)4], 2-Sm3L3, which was crystallographically characterized. The Eu(II) complex 1-Eu3L3 displays weak ferromagnetic coupling between the Eu(II) metal centers (J = 0.1035 cm-1). The addition of 3 equiv of (Ph2SiOK)2O to 1-Eu3L3 resulted in the formation of the polynuclear Eu(II) dimer of dimers [K4Eu2{(Ph2SiO)2O}4(Et2O)2]2, 3-Eu2L4. Complexes 1-Ln3L3 (Ln = Eu and Yb) are stable in solution at room temperature, while 3-Eu2L4 shows higher reactivity and rapidly decomposes to give the mixed-valent Eu(II)/Eu(III) species [K3Eu2{(Ph2SiO)2O}4], 4-Eu2L4. Complex 1-Yb3L3 affects the slow reductive disproportionation of carbon dioxide, but 1-Eu3L3 does not display any reactivity toward CO2. However, the presence of one additional (Ph2SiO-)2O per Eu(II) metal center in 3-Eu2L4 increases dramatically the reductive ability of the Eu(II) metal centers, affording the first example of carbon dioxide activation by an isolated divalent europium complex. The reduction of CO2 by 3-Eu2L4 is immediate, and carbonate is formed selectively after the addition of a stoichiometric amount of CO2.
Collapse
Affiliation(s)
- Aurélien R Willauer
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,ADSresonances Sàrl; Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
de Zwart FJ, Reus B, Laporte AAH, Sinha V, de Bruin B. Metrical Oxidation States of 1,4-Diazadiene-Derived Ligands. Inorg Chem 2021; 60:3274-3281. [PMID: 33587616 PMCID: PMC8023656 DOI: 10.1021/acs.inorgchem.0c03685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
conventional method of assigning formal oxidation states (FOSs)
to metals and ligands is an important tool for understanding and predicting
the chemical reactivity, in particular, in catalysis research. For
complexes containing redox-noninnocent ligands, the oxidation state
of the ligand can be ambiguous (i.e., their spectroscopic oxidation
state can differ from the FOS) and thus frustrates the assignment
of the oxidation state of the metal. A quantitative correlation between
the empirical metric data of redox-active
ligands and their oxidation states using a metrical oxidation state
(MOS) model has been developed for catecholate- and amidophenoxide-derived
ligands by Brown. In the present work, we present a MOS model for
1,4-diazabutadiene (DADn) ligands. This
model is based on a similar approach as reported by Brown, correlating
the intra-ligand bond lengths of the DADn moiety in a quantitative manner with the MOS using geometrical information
from X-ray structures in the Cambridge Crystallographic Data Center
(CCDC) database. However, an accurate determination of the MOS of
these ligands turned out to be dependent on the coordination mode
of the DAD2– moiety, which can adopt both a planar
κ2-N2-geometry and a
η4-N2C2 π-coordination mode in (transition) metal complexes
in its doubly reduced, dianionic enediamide oxidation state. A reliable
MOS model was developed taking the intrinsic differences in intra-ligand
bond distances between these coordination modes of the DAD2– ligand into account. Three different models were defined and tested
using different geometric parameters (C=C → M distance,
M–N–C angle, and M–N–C–C torsion
angle) to describe the C=C backbone coordination with the metal
in the η4-N2-C2 π-coordination mode of the DAD2– ligand. Statistical analysis revealed that the C=C →
M distance best describes the η4-N2-C2 coordination mode using
a cutoff value of 2.46 Å for π-coordination. The developed
MOS model was used to validate the oxidation state assignment of elements
not contained within the training set (Sr, Yb, and Ho), thus demonstrating
the applicability of the MOS model to a wide range of complexes. Chromium
complexes with complex electronic structures were also shown to be
accurately described by MOS analysis. Furthermore, it is shown that
a combination of MOS analysis and FOD calculations provides an inexpensive
method to gain insight into the electronic structure of singlet spin
state (S = 0) [M(trop2dad)] transition-metal complexes
showing (potential) singlet biradical character. Assigning oxidation states to metals
and ligands is an important
tool for understanding and predicting the chemical reactivity. For
complexes containing redox-noninnocent ligands, the oxidation state
of the ligand can be ambiguous. We present a metrical oxidation state
model for 1,4-diazabutadiene ligands, correlating the intra-ligand
bond lengths with the oxidation state using information from X-ray
structures. This model accounts for the difference in bond length
distances between the different coordination modes of the fully reduced
ligand.
Collapse
Affiliation(s)
- Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Bente Reus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Annechien A H Laporte
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Vivek Sinha
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yan H, Wu B, Meng YS, Zhang WX, Xi Z. Synthesis, Structure, and Magnetic Properties of Rare-Earth Bis(diazabutadiene) Diradical Complexes. Inorg Chem 2021; 60:1315-1319. [PMID: 33443994 DOI: 10.1021/acs.inorgchem.0c03534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New kinds of diradical rare-earth metal complexes supported by diazabutadiene (DAD) ligands, [(DAD)2LnN(TMS)2] (1; Ln = Dy, Lu; TMS = SiMe3), were synthesized and studied. They showed a new [radical-Ln-radical] alignment with distorted square-pyramidal geometry. Structural and density functional theory analysis illustrated the radical anionic nature of the ligands. Magnetic studies revealed antiferromagnetic coupling of the two radicals in 1-Lu. 1-Dy showed typical single-molecule-magnet (SMM) behavior with an effective energy barrier of 231 K, which is much higher than those of similar radical-containing SMMs. Magnetostructural analysis suggests that the anionic [N(TMS)2]- group plays a vital role in the SMM property. This study provides a new platform for further improving the performance of radical-Ln SMMs.
Collapse
Affiliation(s)
- Haihan Yan
- Beijing National Laboratory for Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Affiliation(s)
| | - Yann Sarazin
- CNRS, ISCR‐UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|
7
|
Fromm KM. Chemistry of alkaline earth metals: It is not all ionic and definitely not boring! Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Bano K, Anga S, Jain A, Nayek HP, Panda TK. Hydroamination of isocyanates and isothiocyanates by alkaline earth metal initiators supported by a bulky iminopyrrolyl ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj01509a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthesis of heteroleptic and homoleptic alkaline earth metal complexes supported by bulky bis-iminopyrrolyl ligands are reported. The catalytic hydroamination of isocyanates and isothiocyanates with aryl amines using calcium complex is presented.
Collapse
Affiliation(s)
- Kulsum Bano
- Department of Chemistry
- Indian Institute of Technology, Hyderabad, Kandi
- Sangareddy
- India
| | - Srinivas Anga
- Department of Chemistry
- Indian Institute of Technology, Hyderabad, Kandi
- Sangareddy
- India
| | - Archana Jain
- Department of Physics and Chemistry
- Mahatma Gandhi Institute of Technology
- Gandipet
- Hyderabad 500075
- India
| | - Hari Pada Nayek
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Tarun K. Panda
- Department of Chemistry
- Indian Institute of Technology, Hyderabad, Kandi
- Sangareddy
- India
| |
Collapse
|
9
|
|
10
|
Patra SC, Saha Roy A, Banerjee S, Banerjee A, Das Saha K, Bhadra R, Pramanik K, Ghosh P. Palladium(ii) and platinum(ii) complexes of glyoxalbis(N-aryl)osazone: molecular and electronic structures, anti-microbial activities and DNA-binding study. NEW J CHEM 2019. [DOI: 10.1039/c9nj00223e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new family of palladium(ii) and platinum(ii) complexes of redox non-innocent osazone ligands that exhibit moderate antileishmanial activity were isolated.
Collapse
Affiliation(s)
- Sarat Chandra Patra
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103
- India
- Department of Chemistry
| | - Amit Saha Roy
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103
- India
- Department of Chemistry
| | - Saswati Banerjee
- Cancer Biology & Inflammatory Disorder
- Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Ananya Banerjee
- Department of Chemistry
- Bijaygarh Jyotish Roy College
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder
- Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Ranjan Bhadra
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103
- India
| | | | - Prasanta Ghosh
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103
- India
| |
Collapse
|
11
|
Haeri HH, Duraisamy R, Harmgarth N, Liebing P, Lorenz V, Hinderberger D, Edelmann FT. Electronic and Geometric Structures of Paramagnetic Diazadiene Complexes of Lithium and Sodium. ChemistryOpen 2018; 7:701-708. [PMID: 30202705 PMCID: PMC6123648 DOI: 10.1002/open.201800114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
The electronic and molecular structures of the lithium and sodium complexes of 1,4-bis(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diazabutadiene (Me2DADDipp) were fully characterized by using a multi-frequency electron paramagnetic resonance (EPR) spectroscopy approach and crystallography, together with density functional theory (DFT) calculations. EPR measurements, using T1 relaxation-time-filtered pulse EPR spectroscopy, revealed the diagonal elements of the A and g tensors for the metal and ligand sites. It was found that the central metals in the lithium complexes had sizable contributions to the SOMO, whereas this contribution was less strongly observed for the sodium complex. Such strong contributions were attributed to structural specifications (e.g. geometrical data and atomic size) rather than electronic effects.
Collapse
Affiliation(s)
- Haleh H. Haeri
- Institute of ChemistryMartin Luther University Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Ramesh Duraisamy
- Institute of ChemistryOtto-von-Guericke UniversityMagdeburg39106Germany
| | - Nicole Harmgarth
- Institute of ChemistryOtto-von-Guericke UniversityMagdeburg39106Germany
| | - Phil Liebing
- Laboratory for Inorganic ChemistryETH ZürichVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Volker Lorenz
- Institute of ChemistryOtto-von-Guericke UniversityMagdeburg39106Germany
| | - Dariush Hinderberger
- Institute of ChemistryMartin Luther University Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | | |
Collapse
|
12
|
Li H, Feng H, Xie Y, Schaefer Iii HF. The Recently Synthesized Dimagnesiabutadiene and the Analogous Dimetalla-Beryllium, -Calcium, -Strontium, and -Barium Compounds. Chemistry 2016; 22:15019-15026. [PMID: 27594658 DOI: 10.1002/chem.201603355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 01/03/2023]
Abstract
The 2014 synthesis of the remarkable dimagnesium compound Mg2 [C4 (CH3 )2 (Si(CH3 )3 )2 ](C3 H7 )2 (C4 H8 O)2 may point the way to a new chapter in alkaline earth organometallic chemistry. Accordingly, we have studied the known Mg compound and the analogous Be, Ca, Sr, and Ba structures. Although most of our theoretical predictions come from density functional methods, the latter have been benchmarked using coupled cluster theory including single, double, and perturbative triplet excitations, CCSD(T) using cc-pVTZ basis sets. Among our most important predictions are the energies for dissociation to the butadiene plus the RM-MR [R=(C3 H7 )2 (C4 H8 O)2 ; M=Be, Mg, Ca, Si, and Ba] entities. The most reliable predictions for the dissociation energies are 99-104 (Be), 85-93 (Mg), 90-99 (Ca), 83-92 (Sr), and 83-94 (Ba) kcal mol-1 . Thus, there is reason to anticipate that the four unknown compounds should be achievable synthetically. The predicted metal-metal distances (not single bonds) are 2.89 Å (Mg⋅⋅⋅Mg), 3.46 Å (Ca⋅⋅⋅Ca), 3.75 Å (Sr⋅⋅⋅Sr), and 4.04 Å (Ba⋅⋅⋅Ba). The separated RM-MR compounds have longer M-M distances but genuine metal-metal single bonds. This perhaps counter intuitive result is due to the presence of the bridging carbons in the alkaline earth butadiene compounds. All five compounds incorporate metal-carbon ionic interactions.
Collapse
Affiliation(s)
- Huidong Li
- Research Center for Advanced Computation, School of Science, Xihua University, Chengdu, 610039, P. R. China.
| | - Hao Feng
- Research Center for Advanced Computation, School of Science, Xihua University, Chengdu, 610039, P. R. China
| | - Yaoming Xie
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Henry F Schaefer Iii
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
13
|
Anga S, Bhattacharjee J, Banerjee I, Nayek HP, Panda TK. Calcium Complexes Having Different Amidinate Ligands - Synthesis and Structural Diversity. ChemistrySelect 2016. [DOI: 10.1002/slct.201600299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srinivas Anga
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi - 502 285 Sangareddy, Telangana India
| | - Jayeeta Bhattacharjee
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi - 502 285 Sangareddy, Telangana India
| | - Indrani Banerjee
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi - 502 285 Sangareddy, Telangana India
| | - Hari Pada Nayek
- Department of Applied Chemistry; Indian School of Mines, Dhanbad; 826004 Jharkhand India
| | - Tarun K. Panda
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi - 502 285 Sangareddy, Telangana India
| |
Collapse
|
14
|
Rausch J, Lorenz V, Hrib CG, Frettlöh V, Adlung M, Wickleder C, Hilfert L, Jones PG, Edelmann FT. Heterometallic europium disiloxanediolates: synthesis, structural diversity, and photoluminescence properties. Inorg Chem 2014; 53:11662-74. [PMID: 25330143 DOI: 10.1021/ic501837x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This contribution presents a full account of a structurally diverse class of heterometallic europium disiloxanediolates. The synthetic protocol involves in situ metalation of (HO)SiPh2OSiPh2(OH) (1) with either (n)BuLi or KN(SiMe3)2 followed by treatment with EuCl3 in suitable solvents such as 1,2-dimethoxyethane (DME) or tetrahydrofuran (THF). Reaction of EuCl3 with 2 equiv of (LiO)SiPh2OSiPh2(OLi) in DME afforded the Eu(III) bis(disiloxanediolate) "ate" complex [{(Ph2SiO)2O}2{Li(DME)}3]EuCl2 (2), which upon attempted reduction with Zn gave the tris(disiloxanediolate) [{(Ph2SiO)2O}3{Li(DME)}3]Eu (3). Treatment of EuCl3 with (LiO)SiPh2OSiPh2(OLi) in a molar ratio of 1:2 yielded both the ate complex [{(Ph2SiO)2O}3Li{Li(THF)2}{Li(THF)}]EuCl·Li(THF)3 (4) and the LiCl-free europium(III) complex [{(Ph2SiO)2O}2{Li(THF)2}2]EuCl (5). Compound 5 was found to exhibit a brilliant red triboluminescence. When (KO)SiPh2OSiPh2(OK) was used as starting material in a 3:1 reaction with EuCl3, the Eu(III) tris(disiloxanediolate) [{(Ph2SiO)2O}3{K(DME)}3]Eu (6) was isolated. Attempted ligand transfer between 5 and (DAD(Dipp))2Ba(DME) (DAD(Dipp) = N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene) afforded the unique mixed-valent Eu(III)/Eu(II) disiloxanediolate cluster [(Ph2SiO)2O]6Eu(II)4Eu(III)2Li4O2Cl2 (7). All new complexes were structurally characterized by X-ray diffraction. Photoluminescence studies were carried out for complex 5 showing an excellent color quality, due to the strong (5)D0→(7)F2 transition, but a weak antenna effect.
Collapse
Affiliation(s)
- Janek Rausch
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg , Universitätsplatz 2, 39106 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cole BE, Wolbach JP, Dougherty WG, Piro NA, Kassel WS, Graves CR. Synthesis and Characterization of Aluminum-α-diimine Complexes over Multiple Redox States. Inorg Chem 2014; 53:3899-906. [DOI: 10.1021/ic5003989] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bren E. Cole
- Department of Chemistry & Biochemistry, Albright College, 13th & Bern Street, Reading, Pennsylvania 19612, United States
| | - Jeffrey P. Wolbach
- Department of Chemistry & Biochemistry, Albright College, 13th & Bern Street, Reading, Pennsylvania 19612, United States
| | - William G. Dougherty
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Nicholas A. Piro
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - W. Scott Kassel
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Christopher R. Graves
- Department of Chemistry & Biochemistry, Albright College, 13th & Bern Street, Reading, Pennsylvania 19612, United States
| |
Collapse
|
16
|
Patra SC, Weyhermüller T, Ghosh P. Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States. Inorg Chem 2014; 53:2427-40. [DOI: 10.1021/ic4022432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarat Chandra Patra
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, West Bengal, India
| | - Thomas Weyhermüller
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, West Bengal, India
| |
Collapse
|
17
|
Rojas-Sáenz H, Suárez-Moreno GV, Ramos-García I, Duarte-Hernández AM, Mijangos E, Peña-Hueso A, Contreras R, Flores-Parra A. 1,4-Dialkyl-1,4-diazabutadienes: their reactions with aluminum and indium halides. NEW J CHEM 2014. [DOI: 10.1039/c3nj01226c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Chandra Patra S, Saha Roy A, Manivannan V, Weyhermüller T, Ghosh P. Ruthenium, osmium and rhodium complexes of 1,4-diaryl 1,4-diazabutadiene: radical versus non-radical states. Dalton Trans 2014; 43:13731-41. [DOI: 10.1039/c4dt01241k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular and electronic structures of the ruthenium, osmium and rhodium complexes of 1,4-di(3-nitrophenyl)-1,4-diazabutadiene (LDAB) and their redox series are reported.
Collapse
Affiliation(s)
- Sarat Chandra Patra
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103, India
| | - Amit Saha Roy
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103, India
| | | | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Eneriekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-700103, India
| |
Collapse
|