1
|
Yang X, Zhang K, Zhang Y, Liu H, Liu S, Fu D, Song J, Ma X, Li N, Liu SH. Osmapentalenofurans Constructed by Reacting Os≡C1 of Osmapentalyne with Phenols. Chemistry 2024; 30:e202402711. [PMID: 39177286 DOI: 10.1002/chem.202402711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Over the past decade, significant research efforts have focused on osmapentalyne, characterized by the more reactive Os≡C7 (Carbon atoms numbered in a clockwise direction on the osmapentalyne skeleton), across areas encompassing electrophilic, nucleophilic, and addition reactions. Nevertheless, the reactivity of osmapentalyne featuring Os≡C1 remains ripe for further exploration. In this investigation, we effectively synthesized a lineage of osmapentalenofurans through the nucleophilic reaction of osmapentalyne incorporating Os≡C1 with phenols. These resulting complexes demonstrate near-infrared luminescence traits in both solid and liquid states. Particularly noteworthy is the osmapentalenofuran derived from tetraphenylethane (TPE) unit, which showcases remarkable aggregation-induced emission (AIE) property in the aggregated state. These osmapentalenofurans are also able to further extend their range of reactions, including reactions with base and isonitrile. This study not only broadens the scope of applications for metal aromatics but also furnishes valuable insights into the realm of specialized functional materials.
Collapse
Affiliation(s)
- Xiaofei Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kunming Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuteng Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shanting Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Debin Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jie Song
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xuexue Ma
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Li
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
2
|
Blasco D, Sundholm D. The aromatic nature of auracycles and diauracycles based on calculated ring-current strengths. Dalton Trans 2024; 53:10150-10158. [PMID: 38819195 DOI: 10.1039/d4dt00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We have calculated the magnetically induced current density susceptibility for gold-containing organometallic molecular rings using the gauge-including magnetically induced currents (GIMIC) method. The aromatic nature has been determined by calculating the strength of the magnetically induced ring current susceptibility, which is often called ring current. To our knowledge, we show here for the first time that gold-containing organometallic rings may be aromatic or antiaromatic sustaining ring currents in the presence of an external magnetic field. The calculated aromatic character of the rings agrees with the aromatic nature one expects when using Hückel's aromaticity rules. The studied auracycles and diauracycles with 4n electrons in the conjugated orbitals generally sustain a weak paratropic ring current, whereas those having 4n + 2 electrons in the conjugated orbitals sustain a diatropic ring current that is almost as strong as that of benzene. The number of electrons are obtained by assuming that each C, N and Au atom of the ring contribute one electron, and a H atom connected to a N atom in the ring increases the number of electrons by one. An electron-attracting ligand at Au removes one electron from the ring. Formation of a short Au-Au bonding diauracycles reduces the number of electrons in the ring by two.
Collapse
Affiliation(s)
- Daniel Blasco
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland.
| |
Collapse
|
3
|
Yang XF, Zhang MX, Liu SH, Hartl F. Metallaaromatic Complexes as Candidates for Future Molecular Materials and Electronic Devices: Recent Advancements. Chem Asian J 2024; 19:e202300860. [PMID: 37997007 DOI: 10.1002/asia.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
In recent years, the field of organometallic chemistry has made a great progress and diverse types of metallaaromatics have successively been reported. In those studies, incorporation of ligated osmium centers into metallaaromatic systems played a prominent role. The reviewed literature documents that certain metallaaromatics with unconventional photophysical properties, redox and electronic transport properties and magnetism, have potential to be widely used in diverse practical applications, with selected examples of amino acid and fluoride anion identification, photothermal effects, functional materials, photodynamic therapy (PDT) in biomedicine, single-molecule junction conductors, and electron-transport layer materials (ETLs) in solar cells.
Collapse
Affiliation(s)
- Xiao Fei Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Xing Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, United Kingdom
| |
Collapse
|
4
|
Esteruelas MA, Leon F, Moreno-Blázquez S, Oliván M, Oñate E. Preparation, Aromaticity, and Bromination of Spiro Iridafurans. Inorg Chem 2023; 62:16810-16824. [PMID: 37782299 DOI: 10.1021/acs.inorgchem.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Iridium centers of [Ir(μ-Cl)(C8H14)2]2 (1) activate the Cβ(sp2)-H bond of benzylideneacetone to give [Ir(μ-Cl){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (2), which is the starting point for the preparation of the spiro iridafurans IrCl{κ2-C,O-[C(Ph)CHC(Me)O]}2(PiPr3) (3), [Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2(MeCN)2]BF4 (4), [Ir(μ-OH){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (5), Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-C,N-[C6MeH3-py]} (6), and Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acac]} (7). The five-membered rings are orthogonally arranged with the oxygen atoms in trans in an octahedral environment of the iridium atom. Spiro iridafurans are aromatic. The degree of aromaticity and the negative charge of the CH-carbon of the rings depend on ligand trans to the carbon directly attached to the metal. Aromaticity has been experimentally confirmed by bromination of iridafurans with N-bromosuccinimide (NBS). Reactions are sensitive to the degree of aromaticity of the ring and the negative charge of the attacked CH-carbon. Iridafurans can be selectively brominated, when different ligands lie trans to metalated carbons. Bromination of 3 occurs in the ring with the metalated carbon trans to chloride, whereas the bromination of 6 takes place in the ring with the metalated carbon trans to pyridyl. The first gives IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}(PiPr3) (8), which reacts with more NBS to form IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}2(PiPr3) (9). The second yields Ir{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}{κ2-C,N-[C6MeH3-py]} (10). The origin of the selectivity is kinetic, with the rate-determining step of the reaction being the NBS attack. The activation energy depends on the negative charge of the attacked atom; a higher negative charge allows for a lower activation energy. Accordingly, complex 7 undergoes bromination in the acetylacetonate ligand, giving Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acacBr]} (11).
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Félix Leon
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Li Q, Fei J, Ruan K, Hua Y, Chen D, Luo M, Xia H. Reshaping aromatic frameworks: expansion of aromatic system drives metallabenzenoids to metallapentalenes. Chem Sci 2023; 14:5672-5680. [PMID: 37265719 PMCID: PMC10231429 DOI: 10.1039/d3sc01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/22/2023] [Indexed: 06/03/2023] Open
Abstract
Reshaping an aromatic framework to generate other skeletons is a challenging issue due to the stabilization energy of aromaticity. Such reconfigurations of aromatics commonly generate non-aromatic products and hardly ever reshape to a different aromatic framework. Herein, we present the transformation of metallaindenols to metallapentalenes and metallaindenes in divergent pathways, converting one aromatic framework to another with an extension of the conjugation framework. The mechanistic study of this transformation shows that phosphorus ligands play different roles in the divergent processes. Further theoretical studies indicate that the expansion of the aromatic system is the driving force promoting this skeletal rearrangement. Our findings offer a new concept and strategy to reshape and construct aromatic compounds.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
6
|
Chu Z, Li J, Hua Y, Luo M, Chen D, Xia H. Hetero-carbolong chemistry: experimental and theoretical studies of diaza-metallapentalenes. Chem Commun (Camb) 2023; 59:4173-4176. [PMID: 36939834 DOI: 10.1039/d3cc00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Four diaza-osmapentalenes were prepared by two-step reactions, through the treatment of an alkyne-coordinated osmium complex with azo compounds, followed by the addition of AgSbF6/CO. Their aromaticity was confirmed by crystal parameters, NMR spectra and theoretical calculations. These complexes are the first diaza-metallapentalenes representing a new class of metallaaromatics.
Collapse
Affiliation(s)
- Zhenwei Chu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
7
|
Buil M, Esteruelas MA, Oñate E, Picazo NR. Osmathiazole Ring: Extrapolation of an Aromatic Purely Organic System to Organometallic Chemistry. Organometallics 2023; 42:327-338. [PMID: 38601006 PMCID: PMC11005464 DOI: 10.1021/acs.organomet.2c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 02/11/2023]
Abstract
An osmathiazole skeleton has been generated starting from the cation of the salt [OsH(OH)(≡CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene; OTf = CF3SO3) and thioacetamide; its aromaticity degree was compared with that of thiazole, and its aromatic reactivity was confirmed through a reaction with phenylacetylene. Salt 1 reacts with the thioamide to initially afford the synthetic intermediate [OsH{κ2-N,S-[NHC(CH3)S]}(≡CPh)(IPr)(PiPr3)]OTf (2). Thioamidate and alkylidyne ligands of 2 couple in acetonitrile at 70 °C, forming a 1:1 mixture of the salts [OsH{κ2-C,S-[C(Ph)NHC(CH3)S]}(CH3CN)(IPr)(PiPr3)]OTf (3) and [Os{κ2-C,S-[CH(Ph)NHC(CH3)S]}(CH3CN)3(IPr)]OTf (4). Treatment of 3 with potassium tert-butoxide produces the NH-deprotonation of its five-membered ring and gives OsH{κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (5). The osmathiazole ring of 5 is slightly less aromatic than the osmathiazolium cycle of 3 and the purely organic thiazole. However, it is more aromatic than related osmaoxazoles and osmaoxazoliums. There are significant differences in behavior between 3 and 5 toward phenylacetylene. In acetonitrile, the cation of 3 loses the phosphine and adds the alkyne to afford [Os{η3-C3,κ1-S-[CH2C(Ph)C(Ph)NHC(CH3)S]}(CH3CN)2(IPr)]OTf (6), bearing a functionalized allyl ligand. In contrast, the osmathiazole ring of 5 undergoes a vicarious nucleophilic substitution of hydride, by acetylide, via the dihydride OsH2(C≡CPh){κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (7), which releases H2 to yield Os(C≡CPh){κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (8).
Collapse
Affiliation(s)
- María
L. Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Nieves R. Picazo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Talavera M, Pereira-Cameselle R, Peña-Gallego Á, Vázquez-Carballo I, Prieto I, Alonso-Gómez JL, Bolaño S. Optical and electrochemical properties of spirobifluorene iridanaphthalene complexes. Dalton Trans 2023; 52:487-493. [PMID: 36504193 DOI: 10.1039/d2dt03465d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three new spirobifluorene iridaaromatic compounds bearing electron-withdrawing or electron-donor substituents or another iridanaphthalene moiety have been synthesized and structurally characterized. Thorough experimental and theoretical evaluation revealed that these novel systems present a high thermal, air and electrochemical stability as well as low optical and electronic energy gap values with a significant redshift of the absorption maximum in the UV-Vis spectra and predicted remarkably higher first hyperpolarizabilities compared to their organic counterparts. Therefore, the combination of a metallaaromatic system with a spirobifluorene moiety leads to the design and development of new spirobifluorene derivatives. These new systems have shown interesting optical and electronic properties making them of interest for future applications in optoelectronics.
Collapse
Affiliation(s)
- Maria Talavera
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| | - Raquel Pereira-Cameselle
- Universidade de Vigo, Departamento de Química Orgánica, Campus Universitario, 36310, Vigo, Spain
| | - Ángeles Peña-Gallego
- Universidade de Vigo, Departamento de Química Física, Campus Universitario, 36310, Vigo, Spain
| | - Irene Vázquez-Carballo
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| | - Inmaculada Prieto
- Universidade de Vigo, Departamento de Química Física, Campus Universitario, 36310, Vigo, Spain.,Metallosupramolecular Chemistry Group Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Galicia, Spain
| | - J Lorenzo Alonso-Gómez
- Universidade de Vigo, Departamento de Química Orgánica, Campus Universitario, 36310, Vigo, Spain
| | - Sandra Bolaño
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| |
Collapse
|
9
|
Shek HL, Tam KT, Yiu SM, Tse MK, Morris RH, Wong CY. Osmium(II)-Induced Rearrangement of Allenols for Metallafuran Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hau-Lam Shek
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - King-Ting Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang Y, Sun Y, Bai W, Zhou Y, Bao X, Li Y. Synthesis, structure and aromaticity of metallapyridinium complexes. Dalton Trans 2022; 51:2876-2882. [PMID: 35099489 DOI: 10.1039/d1dt04096k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first rhena-analogues of pyridinium (cyclopropametalla-2-isoquinolinium complexes) are obtained from o-ethynyl benzonitriles. Structural analysis and DFT calculations confirm their aromatic nature. Compared to rhenapyrylium, rhenapyridinium has a slightly stronger Hückel π-aromaticity, while a chlorine substituent on the rhenapyridinium ring decreases its aromaticity, which is revealed by NICS, EDDB, MCI and ΔBV(ELFπ) analysis.
Collapse
Affiliation(s)
- Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China
| | - Xiao Bao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| |
Collapse
|
11
|
Cao Q, Wang P, Cai Y, Hua Y, Zheng S, Cheng X, HE G, Wen TB, Chen J. Synthesis and Characterization of Rhena[10]annulynes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most of the reported metallacycles were limited to small cyclic complexes that contain six-membered or smaller rings. Larger-membered metallacycles are still rare and mainly focus on the dimetallacycles. Herein, we...
Collapse
|
12
|
Buil M, Esteruelas MA, Oñate E, Picazo NR. Dissimilarity in the Chemical Behavior of Osmaoxazolium Salts and Osmaoxazoles: Two Different Aromatic Metalladiheterocycles. Organometallics 2021; 40:4150-4162. [PMID: 35264819 PMCID: PMC8895684 DOI: 10.1021/acs.organomet.1c00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The preparation of aromatic hydride-osmaoxazolium and hydride-oxazole compounds is reported and their reactivity toward phenylacetylene investigated. Complex [OsH(OH)(≡CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene, OTf = CF3SO3) reacts with acetonitrile and benzonitrile to give [OsH{κ2-C,O-[C(Ph)NHC(R)O]}(NCR)(IPr)(PiPr3)]OTf (R = Me (2), Ph (3)) via amidate intermediates, which are generated by addition of the hydroxide ligand to the nitrile. In agreement with this, the addition of 2-phenylacetamide to acetonitrile solutions of 1 gives [OsH{κ2-C,O-[C(Ph)NHC(CH2Ph)O]}(NCCH3)(IPr)(PiPr3)]OTf (4). The deprotonation of the osmaoxazolium ring of 2 and 4 leads to the oxazole derivatives OsH{κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (5), CH2Ph (6)). Complexes 2 and 4 add their Os-H and Os-C bonds to the C-C triple bond of phenylacetylene to afford [Os{η3-C 3 ,κ1-O-[CH2C(Ph)C(Ph)NHC(R)O]}(NCCH3)2(IPr)]OTf (R = Me (7), CH2Ph (8)), bearing a tridentate amide-N-functionalized allyl ligand, while complexes 5 and 6 undergo a vicarious nucleophilic substitution of the hydride at the metal center with the alkyne, via the compressed dihydride adduct intermediates OsH2(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (9), CH2Ph (10)), which reductively eliminate H2 to yield the acetylide-osmaoxazoles Os(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (11), CH2Ph (12)).
Collapse
Affiliation(s)
- María
L. Buil
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Nieves R. Picazo
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Tkachenko NV, Muñoz-Castro A, Boldyrev AI. Occurrence of Double Bond in π-Aromatic Rings: An Easy Way to Design Doubly Aromatic Carbon-Metal Structures. Molecules 2021; 26:molecules26237232. [PMID: 34885812 PMCID: PMC8659221 DOI: 10.3390/molecules26237232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
A chemical bonding of several metallabenzenes and metallabenzynes was studied via an adaptive natural density partitioning (AdNDP) algorithm and the induced magnetic field analysis. A unique chemical bonding pattern was discovered where the M=C (M: Os, Re) double bond coexists with the delocalized 6c-2e π-bonding elements responsible for aromatic properties of the investigated complexes. In opposition to the previous description where 8 delocalized π-electrons were reported in metallabenzenes and metallabenzynes, we showed that only six delocalized π-electrons are present in those molecules. Thus, there is no deviation from Hückel's aromaticity rule for metallabenzynes/metallabenzenes complexes. Based on the discovered bonding pattern, we propose two thermodynamically stable novel molecules that possess not only π-delocalization but also retain six σ-delocalized electrons, rendering them as doubly aromatic species. As a result, our investigation gives a new direction for the search for carbon-metal doubly aromatic molecules.
Collapse
Affiliation(s)
- Nikolay V. Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile;
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile;
| | - Alexander I. Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
- Correspondence:
| |
Collapse
|
14
|
Li J, Lu Z, Hua Y, Chen D, Xia H. Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene. Chem Commun (Camb) 2021; 57:8464-8467. [PMID: 34346430 DOI: 10.1039/d1cc03261e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactivity of the triflate functionalized iridapentalene 1, [Ir{[double bond, length as m-dash]CHC(CH2C(CO2Me)2CH2)[double bond, length as m-dash]CC[double bond, length as m-dash]CHC(OTf)[double bond, length as m-dash]CH}(CO)(PPh3)2]OTf, with C-, N-, O- and S-centered neutral nucleophiles was studied, leading to the isolation of a wide array of irida-carbolong derivatives. As an extension, a polycyclic complex with a rare six-fused-ring structure was constructed. This strategy provides a new route for the construction of functionalized metallaaromatic complexes, and the resulting iridacycles exhibit broad spectral absorption ranges, making them potential photoelectric materials.
Collapse
Affiliation(s)
- Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | | | | | | | | |
Collapse
|
15
|
Talavera M, Bolaño S. Iridaaromatics via Methoxy(alkenyl)carbeneiridium Complexes. Molecules 2021; 26:molecules26154655. [PMID: 34361807 PMCID: PMC8347548 DOI: 10.3390/molecules26154655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
This review describes the development of a versatile methodology to synthesize polycyclic metallaaromatic hydrocarbons based on iridium, as well as the studies that helped us to determine and understand what is required in order to broaden the scope and the selectivity of the methodology and stabilize the complexes obtained. This methodology aims to open the door to new materials based on graphene fragments.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Humboldt–Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany;
- Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, 36310 Vigo, Spain
| | - Sandra Bolaño
- Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
16
|
Yeung CF, Shek HL, Yiu SM, Tse MK, Wong CY. Controlled Activation of Dipicolinyl-Substituted Propargylic Alcohol by Ru(II) and Os(II) for Unprecedented Indolizine-Fused Metallafuran Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chi-Fung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Hau-Lam Shek
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| |
Collapse
|
17
|
C−C Bond Formation between the μ‐Alkylidyne Ligands in a Diruthenium Bis(μ‐alkylidyne) Complex; σ‐ and π‐Aromaticity of the Ru
2
C
2
Core. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Zhang Y, Yu C, Huang Z, Zhang WX, Ye S, Wei J, Xi Z. Metalla-aromatics: Planar, Nonplanar, and Spiro. Acc Chem Res 2021; 54:2323-2333. [PMID: 33849276 DOI: 10.1021/acs.accounts.1c00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ConspectusThe concept of aromaticity is one of the most fundamental principles in chemistry. It is generally accepted that planarity is a prerequisite for aromaticity, and typically the more planar the geometry of an aromatic compound is, the stronger aromatic it is. However, it is not always the case, particularly when transition metals are involved in conjugation and electron delocalization of aromatic systems, i.e., metalla-aromatics. Because of the intrinsic nature of transition-metal orbitals, besides planar geometries, the most stable molecular structures of metalla-aromatic compounds could take nonplanar and even spiro geometries. In this Account, we outline several unprecedented types of metalla-aromatics developed recently in our research group.Around seven years ago, we found that 1,4-dilithio-1,3-butadienes, dilithio reagents with π-conjugation, could function as non-innocent ligands and react with low-valent transition-metal complexes, generating monocyclic metalla-aromatic compounds. Later on, by taking advantage of the unique behavior of dilithio reagents and the intrinsic nature of different transition metals, we have synthesized a series of metalla-aromatic compounds, of which four types are discussed here, and each of them represents the first of its kind. First, nearly planar aromatic dicupra[10]annulenes, a 10 π-electron aromatic system with two bridging Cu atoms participating in the orbital conjugation and electron delocalization, are synthesized by annulating two dilithio reagents with two Cu(I) complexes.Second, four kinds of spiro metalla-aromatics, featuring planar (with Pd, Pt, or Rh as the spiro atom) geometry with a whole 10π aromatic system, octahedral (tris-spiro metalla-aromatics with V as the spiro atom) geometry with an entire 40π Craig-Möbius aromatic system, tetrahedral (with Mn as the spiro atom) geometry having two independent and perpendicular 6π planar aromatic rings, and tetrahedral (with Mn as the spiro atom) geometry with one planar and one nonplanar 6π aromatic rings, respectively, are generated. In sharp contrast to spiroaromaticity with carbon acting as the spiro atom described in Organic Chemistry, the metal spiro atom herein takes part in orbital conjugation and electron delocalization.Third, nonplanar aromatic butadienyl diiron complexes are realized. Different from planar aromatic systems featuring delocalized π-type overlap, this nonplanar metalla-aromaticity is achieved by the novel σ-type overlap between the two Fe 3dxz orbitals and the butadienyl π orbital, forming a 6π aromatic system. Fourth, dinickelaferrocene, a ferrocene analogue with two aromatic nickeloles, is synthesized from our monocyclic aromatic dilithionickelole and FeBr2. The aromaticity of dinickelaferrocene and its nickelole ligands is realized by electron back-donation from the Fe 3d orbital to the π* orbital of nickeloles, which also deepens our understanding of the origin of aromaticity.The search for unprecedented and exciting aromatic systems, particularly with transition metals being involved, will continue to drive this intriguing research field forward. Given the synthetic strategies and various types of metalla-aromatics developed and described, diversified metalla-aromatics of interesting structures and reaction chemistry, novel chemical bonding modes, and useful functions can be expected.
Collapse
Affiliation(s)
- Yongliang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chao Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Unveiling the influence of solvent polarity on structural, electronic properties, and 31P NMR parameters of rhenabenzyne complex. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Bao X, Li Y, Bai W, Zhou Y, Wang Y, Sun Y, Jiang J. One-pot syntheses of rhena-2-benzopyrylium complexes with a fused metallacyclopropene unit. Chem Commun (Camb) 2021; 57:1643-1646. [DOI: 10.1039/d0cc07749f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile syntheses of the first cyclopropametalla-2-benzopyrylium complexes containing fused metallapyrylium and metallacyclopropene units.
Collapse
Affiliation(s)
- Xiao Bao
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Liaoning 116024
| | - Yang Li
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| | - Wei Bai
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Liaoning 116024
| | - Yan Zhou
- School of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- 188 Daxue East Road
- Nanning
- P. R. China
| | - Yilun Wang
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- P. R. China
| | - Yue Sun
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Liaoning 116024
| | - Jingyang Jiang
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Liaoning 116024
| |
Collapse
|
21
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Li J, Zhuo Q, Zhuo K, Chen D, Xia H. Synthesis and Reactivity Studies of Irida-carbolong Complexes. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20080392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Daneshdoost V, Ghiasi R, Marjani A. INVESTIGATING THE EFFECTS OF THE EXTERNAL ELECTRIC FIELD ON OSMABENZYNE IN THE GROUND (S0) AND FIRST EXCITED SINGLET (S1) STATES: INSIGHT INTO STRUCTURES, ENERGY, AND PROPERTIES. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Parsa P, Ghiasi R, Marjani A. Quantum‐chemical investigation of the phosphine ligand effects on the structure and electronic properties of a rhenabenzyne complex. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Parisa Parsa
- Department of Chemistry, Faculty of Science, Arak Branch Islamic Azad University Arak Iran
| | - Reza Ghiasi
- Department of Chemistry, East Tehran Branch Islamic Azad University Tehran Iran
| | - Azam Marjani
- Department of Chemistry, Faculty of Science, Arak Branch Islamic Azad University Arak Iran
| |
Collapse
|
25
|
Vahid Daneshdoost, Ghiasi R, Marjani A. Analysis of Bonding Properties of Osmabenzyne in the Ground State (S0) and Excited Singlet (S1) State: A Quantum-Chemical Calculation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Su Q, Ding J, Du Z, Lai Y, Li H, Ouyang MA, Song L, Lin R. Recent Advances in the Reactions of Cyclic Carbynes. Molecules 2020; 25:E5050. [PMID: 33143337 PMCID: PMC7663793 DOI: 10.3390/molecules25215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
The acyclic organic alkynes and carbyne bonds exhibit linear shapes. Metallabenzynes and metallapentalynes are six- or five-membered metallacycles containing carbynes, whose carbine-carbon bond angles are less than 180°. Such distortion results in considerable ring strain, resulting in the unprecedented reactivity compared with acyclic carbynes. Meanwhile, the aromaticity of these metallacycles would stabilize the ring system. The fascinating combination of ring strain and aromaticity would lead to interesting reactivities. This mini review summarized recent findings on the reactivity of the metal-carbon triple bonds and the aromatic ring system. In the case of metallabenzynes, aromaticity would prevail over ring strain. The reactions are similar to those of organic aromatics, especially in electrophilic reactions. Meanwhile, fragmentation of metallacarbynes might be observed via migratory insertion if the aromaticity of metallacarbynes is strongly affected. In the case of metallapentalynes, the extremely small bond angle would result in high reactivity of the carbyne moiety, which would undergo typical reactions for organic alkynes, including interaction with coinage metal complexes, electrophilic reactions, nucleophilic reactions and cycloaddition reactions, whereas the strong aromaticity ensured the integrity of the bicyclic framework of metallapentalynes throughout all reported reaction conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| | - Ran Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| |
Collapse
|
27
|
Abstract
Since the prediction of the existence of metallabenzenes in 1979, metallaaromatic chemistry has developed rapidly, due to its importance in both experimental and theoretical fields. Now six major types of metallaromatic compounds, metallabenzenes, metallabenzynes, heterometallaaromatics, dianion metalloles, metallapentalenes and metallapentalynes (also termed carbolongs), and spiro metalloles, have been reported and extensively studied. Their parent organic analogues may be aromatic, non-aromatic, or even anti-aromatic. These unique systems not only enrich the large family of aromatics, but they also broaden our understanding and extend the concept of aromaticity. This review provides a comprehensive overview of metallaaromatic chemistry. We have focused on not only the six major classes of metallaaromatics, including the main-group-metal-based metallaaromatics, but also other types, such as metallacyclobutadienes and metallacyclopropenes. The structures, synthetic methods, and reactivities are described, their applications are covered, and the challenges and future prospects of the area are discussed. The criteria commonly used to judge the aromaticity of metallaaromatics are presented.
Collapse
Affiliation(s)
- Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
28
|
Luo M, Sui Y, Lin X, Zhu C, Yan Z, Ruan Y, Zhang H, Xia H. [3+2] cycloaddition reaction of metallacyclopropene with nitrosonium ion: isolation of aromatic metallaisoxazole. Chem Commun (Camb) 2020; 56:6806-6809. [DOI: 10.1039/d0cc02502j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The [3+2] cycloaddition of metallacyclopropene with nitrosonium ion gives the first aromatic osmaisoxazole-fused osmapentalene.
Collapse
Affiliation(s)
- Ming Luo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yanheng Sui
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xinlei Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Zhewei Yan
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yonghong Ruan
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Shenzhen Grubbs Institute
| |
Collapse
|
29
|
Yeung C, Chung L, Ng S, Shek H, Tse S, Chan S, Tse M, Yiu S, Wong C. Phosphonium‐Ring‐Fused Bicyclic Metallafuran Complexes of Ruthenium and Osmium. Chemistry 2019; 25:9159-9163. [DOI: 10.1002/chem.201901080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chi‐Fung Yeung
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Lai‐Hon Chung
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Sze‐Wing Ng
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Hau‐Lam Shek
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Sheung‐Ying Tse
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Siu‐Chung Chan
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Man‐Kit Tse
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Shek‐Man Yiu
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P.R. China
| |
Collapse
|
30
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ-Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019; 58:9174-9178. [PMID: 31056849 DOI: 10.1002/anie.201904815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/21/2022]
Abstract
Metalla-aromatics are important complexes that show unique properties owing to their highly conjugated systems, which show Hückel or Möbius aromaticity. Recently, several metalla-aromatics showing spiro-aromaticity or σ-aromaticity have been reported. Herein, we report the isolation of the first cyclopropametallanaphthalenes, in which the metallacyclopropene ring shows σ-aromaticity and weak hyperconjugative aromaticity. The reaction of OsCl2 (PPh3 )3 with o-ethynylphenyl alkynes in the presence of PPh3 followed by protonation with HCl yielded the first cyclopropametallanaphthalenes. The reaction mechanism and the aromaticity were also investigated by density functional theory studies.
Collapse
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Guomei He
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhirong Deng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
31
|
Chu Z, He G, Cheng X, Deng Z, Chen J. Synthesis and Characterization of Cyclopropaosmanaphthalenes Containing a Fused σ‐Aromatic Metallacyclopropene Unit. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenwei Chu
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guomei He
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Xiaoli Cheng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Zhirong Deng
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
32
|
Li J, Lin YM, Zhang H, Chen Y, Lin Z, Xia H. Access to Metal-Bridged Osmathiazine Derivatives by a Formal [4+2] Cyclization. Chemistry 2019; 25:5077-5085. [PMID: 30694573 DOI: 10.1002/chem.201806354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Treatment of osmacyclopentadiene derivatives 1 with phenyl or isopropyl isothiocyanate gave the fused five and six-membered osmacycles 2-5 by a formal [4+2] cyclization. The facile protonation of the newly generated exocyclic imine in complexes 2-5 afforded conjugation-extended osmacycle derivatives 6-9. Compounds 2-9 each contain two main-group heteroatoms (N and S) in the fused six-membered ring located at the ortho (for S) and para (for N) positions relative to the osmium centre; these species can be regarded as rare osma-1,3-thiazine derivatives and represent the first fused metallathiazine derivatives. In contrast to the non-planar organic 6H-1,3-thiazine, nearly coplanar metallathiazines 8 and 9 can be achieved by tuning the groups on the two nitrogen atoms. These unique metal-bridged osma-1,3-thiazine derivatives exhibit remarkable stabilities, broad spectral absorptions spanning the visible spectra, and considerable photothermal properties, which suggests their potential applications in material science.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science &, Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
33
|
Deng Z, Zhu C, Hua Y, He G, Guo Y, Lu R, Cao X, Chen J, Xia H. Synthesis and characterization of metallapentalenoxazetes by the [2+2] cycloaddition of metallapentalynes with nitrosoarenes. Chem Commun (Camb) 2019; 55:6237-6240. [DOI: 10.1039/c9cc02594d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cycloaddition of metallapentalynes with nitrosoarenes produces metallapentalenoxazetes, in which two unstable frameworks are stabilized with a metal fragment.
Collapse
Affiliation(s)
- Zhihong Deng
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ying Guo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ruqiang Lu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Department of Chemistry
| |
Collapse
|
34
|
Zheng S, Chu Z, Lee K, Lin Q, Li Y, He G, Chen J, Jia G. Synthesis, Characterization and Electronic Structure of Dirhenadehyro[12]annulene Complexes. Chempluschem 2018; 84:85-91. [DOI: 10.1002/cplu.201800537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Shaohui Zheng
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Zhenwei Chu
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Ka‐Ho Lee
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China
| | - Qin Lin
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Yucen Li
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guomei He
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering College of MaterialsXiamen University Xiamen 361005 P. R. China
| | - Guochen Jia
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China
| |
Collapse
|
35
|
Wu J, Liu X, Hao Y, Chen H, Su P, Wu W, Zhu J. σ-Aromaticity in a Fully Unsaturated Ring. Chem Asian J 2018; 13:3691-3696. [PMID: 30232840 DOI: 10.1002/asia.201801279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Aromaticity is one of the most fundamental and fascinating chemical topics, attracting both experimental and theoretical chemists owing to its many manifestations. Both σ- and π-aromaticity can be classified depending on the character of the cyclic electron delocalization. In general, σ-aromaticity stabilizes fully saturated rings with σ-electron delocalization whereas the traditional π-aromaticity describes the π-conjugation in fully unsaturated rings. Here, we demonstrate a strong correlation between nucleus-independent chemical shift (NICS) values and extra cyclic resonance energies (ECREs), which are used to evaluate the σ-aromaticity in an unsaturated three-membered ring (3MR) of cyclopropene, which were computed by molecular orbital (MO) theory and valence bond (VB) theory, respectively. Further study shows that the fully unsaturated ring in methylenecyclopropene and its metallic analogy is σ-aromatic. Our findings revolutionize the fundamental knowledge of the concept of σ-aromaticity, thus opening an avenue to design σ-aromaticity in other fully unsaturated systems, which are traditionally reserved as the domain of π-aromaticity.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yulei Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongjiang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
36
|
Diphenylamine-Substituted Osmanaphthalyne Complexes: Structural, Bonding, and Redox Properties of Unusual Donor-Bridge-Acceptor Systems. Chemistry 2018; 24:18998-19009. [DOI: 10.1002/chem.201804025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 11/07/2022]
|
37
|
Li J, Kang H, Zhuo K, Zhuo Q, Zhang H, Lin YM, Xia H. Alternation of Metal-Bridged Metallacycle Skeletons: From Ruthenapentalyne to Ruthenapentalene and Ruthenaindene Derivative. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jinhua Li
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Huijun Kang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Kaiyue Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Qingde Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Hong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Yu-Mei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Haiping Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
38
|
Hua Y, Lan Q, Fei J, Tang C, Lin J, Zha H, Chen S, Lu Y, Chen J, He X, Xia H. Metallapentalenofuran: Shifting Metallafuran Rings Promoted by Substituent Effects. Chemistry 2018; 24:14531-14538. [DOI: 10.1002/chem.201802928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Hexukun Zha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yinghua Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiangxi Chen
- Department of Materials Science and Engineering; College of Materials; Xiamen University; Xiamen 361005 China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
39
|
Abstract
The construction of metal-carbon bonds is one of the most important issues of organometallic chemistry. However, the chelation of polydentate ligands to a metal via several metal-carbon bonds is rare. Metallapentalyne, which can be viewed as a 7-carbon (7C) chain coordinated to a metal via three metal-carbon bonds, was first reported in 2013. Although metallapentalyne contains a metal-carbon triple bond in a five-membered ring (5MR) and the bond angle around the carbyne carbon is only 129.5°, metallapentalyne exhibits excellent stability to air, moisture, and heat. Metallapentalyne possesses the rare planar Möbius aromaticity, which is in sharp contrast to the Hückel antiaromaticity in pentalyne. The metal fragment not only relieves the large ring strain present in pentalyne but also results in the transformation of the antiaromaticity in pentalyne to aromaticity in metallapentalyne. With the extension of the carbon chain from 7 to 12 carbon atoms, a series of novel polycyclic frameworks were constructed via the formation of several metal-carbon bonds. Some interesting phenomena were observed for these complexes. For instance, (1) the carbyne carbon of the 7C framework could react with both nucleophilic and electrophilic reagents, leading to the formation of 16- and 18-electron metallapentalenes; (2) σ aromaticity was first observed in an unsaturated system in the 8C framework; (3) two classical antiaromatic frameworks, cyclobutadiene and pentalene, were simultaneously stabilized in the 9C framework for the first time; (4) three fused 5MRs bridged by a metal are coplanar in the 10C framework; (5) the first [2 + 2 + 2] cycloaddition of a late transition metal carbyne complex with alkynes was realized during the construction of an 11C framework; (6) the largest number of carbon atoms coordinated to a metal atom in the equatorial plane was observed in the 12C framework; and (7) sharing of the transition metal by multiple aromatic units has seldom been observed in the metalla-aromatics. Therefore, the term carbolong chemistry has been used to describe the chemistry of these novel frameworks. More interestingly, carbolong complexes exhibit diverse properties, which could lead to potential future applications. As the discovery and creation of molecular fragments lead to advancements in chemistry, medical science, and materials chemistry, these novel polydentate carbon chain chelates might have important influences in these fields due to their facile synthesis, high stability, and unique properties.
Collapse
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
40
|
Lin Q, Li S, Lin J, Chen M, Lu Z, Tang C, Chen Z, He X, Chen J, Xia H. Synthesis and Characterization of Photothermal Osmium Carbolong Complexes. Chemistry 2018; 24:8375-8381. [DOI: 10.1002/chem.201800656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Qin Lin
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Shenyan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Meijin Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
41
|
Zhou X, Zhang H. Reactions of Metal-Carbon Bonds within Six-Membered Metallaaromatic Rings. Chemistry 2018; 24:8962-8973. [DOI: 10.1002/chem.201705679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials ( i ChEM); Xiamen University; P. R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials ( i ChEM); Xiamen University; P. R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
42
|
Zhu C, Zhu J, Zhou X, Zhu Q, Yang Y, Wen TB, Xia H. Isolation of an Eleven-Atom Polydentate Carbon-Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yuhui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Ting Bin Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
43
|
Zhu C, Zhu J, Zhou X, Zhu Q, Yang Y, Wen TB, Xia H. Isolation of an Eleven-Atom Polydentate Carbon-Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne. Angew Chem Int Ed Engl 2018; 57:3154-3157. [DOI: 10.1002/anie.201713391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yuhui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Ting Bin Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
44
|
Chen J, Lin Q, Li S, Lu Z, Lin J, Chen Z, Xia H. Synthesis and Characterization of an Osmapentalene Derivative Containing a β-Agostic Os···H–C(sp3) Interaction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiangxi Chen
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Qin Lin
- Department
of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shenyan Li
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhengyu Lu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jianfeng Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhixin Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Haiping Xia
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
45
|
Wu J, An K, Sun T, Fan J, Zhu J. To Be Bridgehead or Not to Be? This is a Question of Metallabicycles on the Interplay between Aromaticity and Ring Strain. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Physical
Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ke An
- State Key Laboratory of Physical
Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tingting Sun
- State Key Laboratory of Physical
Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinglan Fan
- State Key Laboratory of Physical
Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical
Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical
and Computational Chemistry and Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
Abstract
Metallaaromatics can be broadly defined as aromatic compounds in which one of the ring atoms is a transition metal. The metallabenzenes are one important class of these compounds that has undergone extensive study recently. Closely related species such as fused-ring metallabenzenes, heterometallabenzenes, π-coordinated metallabenzenes and metallabenzynes have also attracted considerable attention. Although many metallaaromatics can be considered as metalla-analogues of classic organic aromatic compounds, this is not always the case. Recent seminal studies have shown that metallapentalenes and metallapentalynes, which are metalla-analogues of the anti-aromatic compounds pentalene and pentalyne, are in fact aromatic and highly stable. Very unusual spiro-metallaaromatic compounds have also recently been isolated. In this concepts article, key features of all these intriguing metallaaromatic compounds are discussed with reference to the structural, spectroscopic, reactivity and theoretical studies that have been undertaken. These compounds continue to generate much interest, not only because of the contributions they make to fundamental chemical understanding, but also because of the promise of possible practical applications.
Collapse
Affiliation(s)
- Benjamin J Frogley
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
47
|
Multiyne chains chelating osmium via three metal-carbon σ bonds. Nat Commun 2017; 8:1912. [PMID: 29203873 PMCID: PMC5714968 DOI: 10.1038/s41467-017-02120-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022] Open
Abstract
Although the formation of metal–carbon σ bonds is a fundamental principle in organometallic chemistry, the direct bonding of one organic molecule with one metal center to generate more than two metal–carbon σ bonds remains a challenge. Herein, we report an aromaticity-driven method whereby multiyne chains are used to construct three metal–carbon σ bonds in a one-pot reaction under mild conditions. In this method, multiyne chains act as ligand precursors capable of chelating an osmium center to yield planar metallapolycycles, which exhibit aromaticity and good stability. The direct assembly of various multiyne chains with commercially available metal complexes or even simple metal salts provides a convenient and efficient strategy for constructing all carbon-ligated chelates on the gram scale. Metal-carbon σ bonds mark the basis of organometallic chemistry, but the formation of multiple such bonds between single organic and metal entities remains a challenge. Here, the authors report a one-pot aromaticity-driven method to construct osmium-based multidentate complexes containing three metal-carbon σ bonds from multiyn chains.
Collapse
|
48
|
García-Rodeja Y, Fernández I. Influence of the Transition-Metal Fragment on the Reactivity of Metallaanthracenes. Chemistry 2017; 23:6634-6642. [DOI: 10.1002/chem.201700551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yago García-Rodeja
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad Complutense; 28040 Madrid Spain
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad Complutense; 28040 Madrid Spain
| |
Collapse
|
49
|
Huang J, Zhou X, Zhao Q, Li S, Xia H. Synthesis, Characterization and Electrochemical Properties of 4,5-Diazafluoren-9-yl or Fluoren-9-yl Terminated Homobimetallic Ruthenium and Osmium Allenylidene, Alkynyl-Allenylidene Complexes. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jinbo Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University, Xiamen; Fujian 361005 China
| | - Xiaoxi Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University, Xiamen; Fujian 361005 China
| | - Qianyi Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University, Xiamen; Fujian 361005 China
| | - Shunhua Li
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University, Xiamen; Fujian 361005 China
| | - Haiping Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering; Xiamen University, Xiamen; Fujian 361005 China
| |
Collapse
|
50
|
Lu Z, Zhu C, Cai Y, Zhu J, Hua Y, Chen Z, Chen J, Xia H. Metallapentalenofurans and Lactone-Fused Metallapentalynes. Chemistry 2017; 23:6426-6431. [DOI: 10.1002/chem.201700789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering; College of Materials; Xiamen University; Xiamen 361005 P.R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|