1
|
Gitlina AY, Khistiaeva V, Melnikov A, Ivonina M, Sizov V, Spiridonova D, Makarova A, Vyalikh D, Grachova E. Organometallic Ir(III) complexes: post-synthetic modification, photophysical properties and binuclear complex construction. Dalton Trans 2023. [PMID: 37334469 DOI: 10.1039/d3dt00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Two methods of post-synthetic modification (Suzuki coupling and CuAAC click-reaction) were applied to Ir(III) complexes [Ir(C^N)2N^N]+ to provide the second highly selective donor site. One family of functionalized complexes was used to demonstrate the potential of post-synthetic modification for controlled construction of d-d and d-f binuclear complexes. The complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, ESI mass-spectrometry, FTIR spectroscopy and single crystal X-ray diffraction analysis. By means of XPS and NEXAFS spectroscopy the coordination of diimine donor site to the Ln(III) centre has been definitely confirmed. The photophysical properties of mono- and binuclear complexes were carefully investigated, and the evolution of luminescent characteristics during the formation of a system of connected metallocenters is also discussed. TDDFT calculations were used to describe the luminescence mechanism and to confirm the conclusions made on the basis of experimental data.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viktoria Khistiaeva
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mariia Ivonina
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Vladimir Sizov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Dar'ya Spiridonova
- Centre for X-ray Diffraction Studies, St Petersburg University, 199034 St. Petersburg, Russia
| | - Anna Makarova
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Denis Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
2
|
Li Z, Wang Q, Yu K, Cui W, He Y, Chen B, Zhao D. A Multimodal Ratiometric Luminescent Thermometer Based on a Single-Dysprosium Metal-Organic Framework. Inorg Chem 2023; 62:5652-5659. [PMID: 36961976 DOI: 10.1021/acs.inorgchem.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The design of high-performance luminescent MOF thermometers with multi-operation modes has been long sought but remains a formidable challenge. In this work, for the first time, we present a multimodal luminescent ratiometric thermometer based on the single-lanthanide metal-organic framework (MOF) DyTPTC-2Me (H4TPTC-2Me = 2',5'-dimethyl-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid). It not only has the characteristic luminescence of Dy3+ in which the atomic transitions from the 4I15/2 and 4F9/2 states (thermally coupled energy levels, TCELs) are included but also emits ligand fluorescence due to the efficient energy back-transfer of Dy3+ to the ligand, thus allowing accurate non-invasive determination of temperature by different modes. In particular, the TCEL-based emissions of the Dy3+ ions give ideal signals for measuring the temperature in the 303-423 K range. The emissions of the ligand and Dy3+ (4F9/2 → 6H13/2) are used for temperature sensing in the range of 423 to 503 K. Both two modes feature promising thermometric performance, including high relative sensitivity, high temperature resolution, and excellent repeatability. Their combination is thus beneficial to achieve more accurate temperature detection over a broad temperature range, which can broaden the application scope of the ratiometric luminescent thermometers.
Collapse
Affiliation(s)
- Zhangjian Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Kuangli Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Wenlu Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
3
|
Xu K, Xie X, Zheng LM. Iridium-lanthanide complexes: Structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Fan K, Bao SS, Huo R, Huang XD, Liu YJ, Yu ZW, Kurmoo M, Zheng LM. Luminescent Ir(iii)–Ln(iii) coordination polymers showing slow magnetization relaxation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01504c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two structural types of iridium(iii)–lanthanide(iii) coordination polymers, single-chain Ir2Ln and double-chain Ir4Ln2 (Ln = Gd, Dy, Er, and Yb), have been prepared. SMM behaviour and NIR luminescence were observed for the Ir–Er and Ir–Yb systems.
Collapse
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Ran Huo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yu-Jie Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zi-Wen Yu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Mohamedally Kurmoo
- Institut de Chimie
- Université de Strasbourg CNRS-UMR7177
- Strasbourg Cedex 67007
- France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
5
|
Haiduc I. Review. Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 2. Six-membered rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1670349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances. INCLUDING ACTINIDES 2019. [DOI: 10.1016/bs.hpcre.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Zhao D, Yue D, Zhang L, Jiang K, Qian G. Cryogenic Luminescent Tb/Eu-MOF Thermometer Based on a Fluorine-Modified Tetracarboxylate Ligand. Inorg Chem 2018; 57:12596-12602. [DOI: 10.1021/acs.inorgchem.8b01746] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Yue
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Jiang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Pushkarev AP, Balashova TV, Kukinov AA, Arsenyev MV, Yablonskiy AN, Kryzhkov DI, Andreev BA, Rumyantcev RV, Fukin GK, Bochkarev MN. Sensitization of NIR luminescence of Yb 3+ by Zn 2+ chromophores in heterometallic complexes with a bridging Schiff-base ligand. Dalton Trans 2017; 46:10408-10417. [PMID: 28745339 DOI: 10.1039/c7dt01340j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, complexes [ZnL]2 (1), {(H2O)Zn(μ-L)Yb[OCH(CF3)2]3} (2), {[(CF3)2HCO]Zn(μ-L)Yb[OCH(CF3)2](μ-OH)}2 (3), and [(H2O)Ln2(L)3] (Ln = Yb (4) and Gd (5)) containing a bridging Schiff-base ligand (H2L = N,N'-bis(3-methoxy salicylidene)phenylene-1,2-diamine) were synthesized. The compounds 1-4 were structurally characterized. The ytterbium derivatives 2-4 exhibited bright NIR metal-centred photoluminescence (PL) of Yb3+ ion under one- (λex = 380 nm) and two-photon (λex = 750 nm) excitation. The superior luminescence properties of complex 2, which was suggested as a marker for NIR bioimaging, were explained via the strong absorption of the 375 nm LMCT state of the ZnL chromophore, efficient energy transfer from ZnL towards Yb3+ through a reversible ligand-to-lanthanide electron transfer process, and absence of luminescence quenchers (C-H and O-H groups) in the first coordination sphere of the rare-earth atom.
Collapse
Affiliation(s)
- Anatoly P Pushkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation. and Department of Nanophotonics and Metamaterials, ITMO University, 197101 St. Petersburg, Russian Federation
| | - Tatyana V Balashova
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Andrey A Kukinov
- Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation
| | - Maxim V Arsenyev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation. and Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation
| | - Artem N Yablonskiy
- Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation and Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Denis I Kryzhkov
- Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation and Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Boris A Andreev
- Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation and Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Roman V Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Georgy K Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Mikhail N Bochkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation. and Nizhny Novgorod State University, Gagarina avenue 23/2, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
9
|
Davidson R, Hsu YT, Bhagani C, Yufit D, Beeby A. Exploring the Chemistry and Photophysics of Substituted Picolinates Positional Isomers in Iridium(III) Bisphenylpyridine Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ross Davidson
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United Kingdom
| | - Yu-Ting Hsu
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United Kingdom
| | - Chandni Bhagani
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United Kingdom
| | - Dmitry Yufit
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United Kingdom
| | - Andrew Beeby
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United Kingdom
| |
Collapse
|
10
|
Lu C, Chen Y, Tang L, Wei S, Song Y, Wang J. Preparation of Yb, N, and F doped Er3+:Y3Al5O12/TiO2 composite films for visible-light photocatalytic degradation of organic dyes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s0036024417070093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Jiang W, Hong C, Wei H, Wu Z, Bian Z, Huang C. A green-emitting iridium complex used for sensitizing europium ion with high quantum yield. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhao D, Zhang J, Yue D, Lian X, Cui Y, Yang Y, Qian G. A highly sensitive near-infrared luminescent metal-organic framework thermometer in the physiological range. Chem Commun (Camb) 2016; 52:8259-62. [PMID: 27284589 DOI: 10.1039/c6cc02471h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A near-infrared luminescent metal-organic framework Nd0.866Yb0.134BTB was developed as a self-calibrated thermometer in the physiological range. Its features include high sensitivity and resolution, and good biocompatibility, making such a material useful for biomedical applications.
Collapse
Affiliation(s)
- Dian Zhao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jana A, Crowston BJ, Shewring JR, McKenzie LK, Bryant HE, Botchway SW, Ward AD, Amoroso AJ, Baggaley E, Ward MD. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing. Inorg Chem 2016; 55:5623-33. [PMID: 27219675 DOI: 10.1021/acs.inorgchem.6b00702] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).
Collapse
Affiliation(s)
- Atanu Jana
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Bethany J Crowston
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Jonathan R Shewring
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom.,Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Helen E Bryant
- Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Andrew D Ward
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Angelo J Amoroso
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Michael D Ward
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
15
|
Zhang LY, Li K, Pan M, Fan YN, Wang HP, Su CY. Observation of cascade f → d → f energy transfer in sensitizing near-infrared (NIR) lanthanide complexes containing the Ru(ii) polypyridine metalloligand. NEW J CHEM 2016. [DOI: 10.1039/c6nj00089d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A possible approach to achieve multiple f → d, d → f and cascade f → d → f energy transfer processes in heteronuclear Ru–Ln and Ln1–Ru–Ln2 complexes.
Collapse
Affiliation(s)
- Lu-Yin Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| | - Hai-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- State Key Laboratory of Optoelectronic Materials and Technologies
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
| |
Collapse
|