1
|
Lai Q, Mason AH, Agarwal A, Edenfield WC, Zhang X, Kobayashi T, Kratish Y, Marks TJ. Rapid Polyolefin Hydrogenolysis by a Single-Site Organo-Tantalum Catalyst on a Super-Acidic Support: Structure and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202312546. [PMID: 37948306 DOI: 10.1002/anie.202312546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 11/12/2023]
Abstract
The novel electrophilic organo-tantalum catalyst AlS/TaNpx (1) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3 Ta=CHt Bu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst 1 is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge, 1 exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2 units) ⋅ mol(Ta)-1 ⋅ h-1 at 200 °C/17 atm H2 ) reported to date in the peer-reviewed literature. Unlike the AlS/ZrNp2 analog, the Ta catalyst is more thermally stable and offers multiple potential C-C bond activation pathways. For hydrogenolysis, AlS/TaNpx is effective for a wide variety of pre- and post-consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.
Collapse
Affiliation(s)
- Qingheng Lai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Alexander H Mason
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Amol Agarwal
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Wilson C Edenfield
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Xinrui Zhang
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Takeshi Kobayashi
- U.S. DOE Ames National Laboratory, IOWA State University, Ames, IA50011-3020, USA
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| |
Collapse
|
2
|
Ishizaka Y, Arai N, Matsumoto K, Nagashima H, Takeuchi K, Fukaya N, Yasuda H, Sato K, Choi JC. Bidentate Disilicate Framework for Bis-Grafted Surface Species. Chemistry 2021; 27:12069-12077. [PMID: 34189785 DOI: 10.1002/chem.202101927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/08/2022]
Abstract
Recent advances in surface organometallic chemistry have enabled the detailed characterization of the surface species in single-site heterogeneous catalysts. However, the selective formation of bis-grafted surface species remains challenging because of the heterogeneity of the supporting surface. Herein, we introduce a metal complex bearing bidentate disilicate ligands, -OSi(Ot Bu)2 OSi(Ot Bu)2 O-, as a molecular precursor, which has a silicate framework adjacent to the metal (Pt) center. The grafting of the precursors on silica supports (MCM-41 and CARiACT Q10) proceeded through a substitution reaction on the silicon atoms of the disilicate ligand, which was verified by the detection of isobutene and t BuOH as the elimination products, to selectively yield bis-grafted surface species. The chemical structure of the surface species was characterized by solid-state NMR, and the chemical shift values of the ancillary ligands and 195 Pt nuclei suggested that the bidentate coordination sphere was maintained following grafting.
Collapse
Affiliation(s)
- Yusuke Ishizaka
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Natsumi Arai
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroki Nagashima
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroyuki Yasuda
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
3
|
Mörsdorf JM, Wadepohl H, Ballmann J. Reductive Hydrogenation under Single-Site Control: Generation and Reactivity of a Transient NHC-Stabilized Tantalum(III) Alkoxide. Inorg Chem 2021; 60:9785-9795. [PMID: 34111351 DOI: 10.1021/acs.inorgchem.1c01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most attractive routes for the preparation of reactive tantalum(III) species relies on the efficient salt-free hydrogenolysis of tantalum(V) alkyls or tantalum(V) alkylidenes, a process known as reductive hydrogenation. For silica-crafted tantalum alkyls and alkylidenes, this process necessarily proceeds at well-separated tantalum centers, while related reductive hydrogenations in homogeneous solution commonly involve dimeric complexes. Herein, an NHC scaffold was coordinated to a novel tri(alkoxido)tantalum(V) alkylidene to circumvent the formation of dimers during reductive hydrogenation. Employing this new model system, a key intermediate of the process, namely a hydrido-tantalum alkyl, was isolated for the first time and shown to exhibit a bidirectional reactivity. Upon being heated, the latter complex was found to undergo either an α-elimination or a reductive alkane elimination. In the (overall unproductive) α-elimination step, H2 and the parent alkylidene were regenerated, while the sought-after transient d2-configured tantalum(III) derivative was produced along the reaction coordinate of the reductive alkane elimination. The reactive low-valence metal center was found to rapidly attack one of the NHC substituents via an oxidative C-H activation, which led to the formation of a cyclometalated tantalum(V) hydride. The proposed elemental steps are in line with kinetic data, deuterium labeling experiments, and density functional theory (DFT) modeling studies. DFT calculations also indicated that the S = 0 spin ground state of the Ta(III) center plays a crucial role in the cyclometalation reaction. The cyclometalated Ta(V) hydride was further investigated and reacted with several alkenes and alkynes. In addition to a rich insertion and isomerization chemistry, these studies also revealed that the former hydride may undergo a formal cycloreversion and thus serve as a tantalum(III) synthon, although the original tantalum(III) intermediate is not involved in this process. The latter reactivity was observed upon reaction with internal alkynes and led to the corresponding η2-alkyne derivatives via vinyl intermediates, which rearrange via a remarkable, hitherto unprecedented, hydrogen shift reaction.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Lassalle S, Jabbour R, Schiltz P, Berruyer P, Todorova TK, Veyre L, Gajan D, Lesage A, Thieuleux C, Camp C. Metal–Metal Synergy in Well-Defined Surface Tantalum–Iridium Heterobimetallic Catalysts for H/D Exchange Reactions. J Am Chem Soc 2019; 141:19321-19335. [DOI: 10.1021/jacs.9b08311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Ribal Jabbour
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Pauline Schiltz
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Pierrick Berruyer
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Tanya K. Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
| | - Laurent Veyre
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
6
|
Kaphan DM, Ferrandon MS, Langeslay RR, Celik G, Wegener EC, Liu C, Niklas J, Poluektov OG, Delferro M. Mechanistic Aspects of a Surface Organovanadium(III) Catalyst for Hydrocarbon Hydrogenation and Dehydrogenation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Magali S. Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Ryan R. Langeslay
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Gokhan Celik
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
8
|
Abstract
A novel method for the synthesis of the homogeneous homoleptic cationic tantalum(V)tetramethyl complex [(TaMe4)+ MeB(C6F5)3−] from neutral tantalumpentamethyl (TaMe5) has been described, by direct demethylation using B(C6F5)3 reagent. The aforesaid higher valent cationic tantalum complex was characterized precisely by liquid state 1H-NMR, 13C-NMR, and 1H-13C-NMR correlation spectroscopy.
Collapse
|
9
|
Metal Fluorides as Lithium-Ion Battery Materials: An Atomic Layer Deposition Perspective. COATINGS 2018. [DOI: 10.3390/coatings8080277] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lithium-ion batteries are the enabling technology for a variety of modern day devices, including cell phones, laptops and electric vehicles. To answer the energy and voltage demands of future applications, further materials engineering of the battery components is necessary. To that end, metal fluorides could provide interesting new conversion cathode and solid electrolyte materials for future batteries. To be applicable in thin film batteries, metal fluorides should be deposited with a method providing a high level of control over uniformity and conformality on various substrate materials and geometries. Atomic layer deposition (ALD), a method widely used in microelectronics, offers unrivalled film uniformity and conformality, in conjunction with strict control of film composition. In this review, the basics of lithium-ion batteries are shortly introduced, followed by a discussion of metal fluorides as potential lithium-ion battery materials. The basics of ALD are then covered, followed by a review of some conventional lithium-ion battery materials that have been deposited by ALD. Finally, metal fluoride ALD processes reported in the literature are comprehensively reviewed. It is clear that more research on the ALD of fluorides is needed, especially transition metal fluorides, to expand the number of potential battery materials available.
Collapse
|
10
|
Corma A, Navas J, Sabater MJ. Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chem Rev 2018; 118:1410-1459. [DOI: 10.1021/acs.chemrev.7b00340] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Avelino Corma
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida Los Naranjos s/n, 46022 Valencia, Spain
| | - Javier Navas
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida Los Naranjos s/n, 46022 Valencia, Spain
| | - Maria J. Sabater
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida Los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Mohandas JC, Abou-Hamad E, Callens E, Samantaray MK, Gajan D, Gurinov A, Ma T, Ould-Chikh S, Hoffman AS, Gates BC, Basset JM. From single-site tantalum complexes to nanoparticles of Ta x N y and TaO x N y supported on silica: elucidation of synthesis chemistry by dynamic nuclear polarization surface enhanced NMR spectroscopy and X-ray absorption spectroscopy. Chem Sci 2017; 8:5650-5661. [PMID: 28989603 PMCID: PMC5621011 DOI: 10.1039/c7sc01365e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/08/2017] [Indexed: 11/30/2022] Open
Abstract
Air-stable catalysts consisting of tantalum nitride nanoparticles represented as a mixture of Ta x N y and TaO x N y with diameters in the range of 0.5 to 3 nm supported on highly dehydroxylated silica were synthesized from TaMe5 (Me = methyl) and dimeric Ta2(OMe)10 with guidance by the principles of surface organometallic chemistry (SOMC). Characterization of the supported precursors and the supported nanoparticles formed from them was carried out by IR, NMR, UV-Vis, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopies complemented with XRD and high-resolution TEM, with dynamic nuclear polarization surface enhanced NMR spectroscopy being especially helpful by providing enhanced intensities of the signals of 1H, 13C, 29Si, and 15N at their natural abundances. The characterization data provide details of the synthesis chemistry, including evidence of (a) O2 insertion into Ta-CH3 species on the support and (b) a binuclear to mononuclear transformation of species formed from Ta2(OMe)10 on the support. A catalytic test reaction, cyclooctene epoxidation, was used to probe the supported nanoparticles, with 30% H2O2 serving as the oxidant. The catalysts gave selectivities up to 98% for the epoxide at conversions as high as 99% with a 3.4 wt% loading of Ta present as Ta x N y /TaO x N y .
Collapse
Affiliation(s)
- Janet C Mohandas
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - Edy Abou-Hamad
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - Emmanuel Callens
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - Manoja K Samantaray
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - David Gajan
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 , Villeurbanne , France
| | - Andrei Gurinov
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - Tao Ma
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA .
| | - Samy Ould-Chikh
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| | - Adam S Hoffman
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA .
| | - Bruce C Gates
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA .
| | - Jean-Marie Basset
- King Abdullah University of Science & Technology , KAUST Catalysis Center (KCC) , 23955-6900 Thuwal , Saudi Arabia .
| |
Collapse
|
12
|
Hamieh A, Dey R, Nekoueishahraki B, Samantaray MK, Chen Y, Abou-Hamad E, Basset JM. Single site silica supported tetramethyl niobium by the SOMC strategy: synthesis, characterization and structure–activity relationship in the ethylene oligomerization reaction. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc02585h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Facile synthesis of two SOMC-based niobium methyl complexes which showed different selectivity in ethylene oligomerization.
Collapse
Affiliation(s)
- Ali Hamieh
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Raju Dey
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Bijan Nekoueishahraki
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Manoja K. Samantaray
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Yin Chen
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science & Technology
- KAUST Catalysis Center (KCC)
- 23955-6900 Thuwal
- Saudi Arabia
| |
Collapse
|
13
|
Hamieh A, Dey R, Samantaray MK, Abdel-Azeim S, Abou-Hamad E, Chen Y, Pelletier JDA, Cavallo L, Basset JM. Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Hamieh
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Raju Dey
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Manoja K. Samantaray
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Safwat Abdel-Azeim
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Yin Chen
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jérémie D. A. Pelletier
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST), KAUST
Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Copéret C, Estes DP, Larmier K, Searles K. Isolated Surface Hydrides: Formation, Structure, and Reactivity. Chem Rev 2016; 116:8463-505. [DOI: 10.1021/acs.chemrev.6b00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Deven P. Estes
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Kim Larmier
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Keith Searles
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem Rev 2016; 116:323-421. [PMID: 26741024 DOI: 10.1021/acs.chemrev.5b00373] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Aleix Comas-Vives
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Matthew P Conley
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Deven P Estes
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Haruki Nagae
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland.,Department of Chemistry, Graduate School of Engineering Science, Osaka University, CREST , Toyonaka, Osaka 560-8531, Japan
| | - Francisco Núñez-Zarur
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Pavel A Zhizhko
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov str. 28, 119991 Moscow, Russia
| |
Collapse
|
16
|
Chen Y, Lin B, Yu W, Yang Y, Bashir SM, Wang H, Takanabe K, Idriss H, Basset JM. Surface Functionalization of g-C3N4: Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts. Chemistry 2015; 21:10290-5. [DOI: 10.1002/chem.201501742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 12/18/2022]
|
17
|
Hamieh A, Chen Y, Abdel-Azeim S, Abou-hamad E, Goh S, Samantaray M, Dey R, Cavallo L, Basset JM. Well-Defined Surface Species [(≡Si—O—)W(═O)Me3] Prepared by Direct Methylation of [(≡Si—O—)W(═O)Cl3], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene. ACS Catal 2015. [DOI: 10.1021/cs5020749] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ali Hamieh
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yin Chen
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Safwat Abdel-Azeim
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-hamad
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Serena Goh
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manoja Samantaray
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raju Dey
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jean Marie Basset
- Physical Sciences and Engineering,
KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Credendino R, Vignola E, Poater A, Callens E, Basset JM, Cavallo L. Fluxional Behavior of Molecular WMe6 and of Silica Grafted WMe6. Organometallics 2015. [DOI: 10.1021/om5013192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Raffaele Credendino
- KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Emanuele Vignola
- Dipartimento
di Chimica e Biologia, Università di Salerno, Via Ponte
don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Albert Poater
- KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, University of Girona, Campus de Montilivisn, 17071 Girona, Catalonia, Spain
| | - Emmanuel Callens
- KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jean-Marie Basset
- KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Dipartimento
di Chimica e Biologia, Università di Salerno, Via Ponte
don Melillo, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
19
|
Chen Y, Abou-hamad E, Hamieh A, Hamzaoui B, Emsley L, Basset JM. Alkane Metathesis with the Tantalum Methylidene [(≡SiO)Ta(═CH2)Me2]/[(≡SiO)2Ta(═CH2)Me] Generated from Well-Defined Surface Organometallic Complex [(≡SiO)TaVMe4]. J Am Chem Soc 2015; 137:588-91. [DOI: 10.1021/ja5113468] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yin Chen
- Physical
Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-hamad
- Physical
Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ali Hamieh
- Physical
Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bilel Hamzaoui
- Physical
Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lyndon Emsley
- Centre
de RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS, ENS-Lyon, UCB Lyon 1, Université de Lyon, 5 rue de la
Doua, 69100 Villeurbanne, France
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Marie Basset
- Physical
Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Samantaray MK, Dey R, Kavitake S, Basset JM. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|