1
|
Kadam A, Afandiyeva M, Brennessel WW, Kennedy CR. Deactivation Modes in Nickel-Mediated Suzuki-Miyaura Cross-Coupling Reactions Using an NHC-Pyridonate Ligand. Organometallics 2024; 43:2574-2580. [PMID: 39483127 PMCID: PMC11523216 DOI: 10.1021/acs.organomet.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024]
Abstract
The catalytic activity of an NHC-pyridonate-supported nickel(0) complex for Suzuki-Miyaura coupling of aryl halides was evaluated. Product formation was observed in the absence of a basic additive. However, low turnover numbers resulted from competitive catalyst deactivation. The nature of deactivation-dimerization of the nickel(II) aryl intermediate-was elucidated through a combination of NMR monitoring, direct synthesis, and X-ray diffraction. Lewis basic and Lewis acidic additives were evaluated with the goal of improving the stability of the nickel(II) aryl intermediate but failed to enable catalytic turnover. Taken together, these findings highlight both the promise and the pitfalls associated with incorporating secondary-sphere Lewis basic groups for cooperative catalysis.
Collapse
Affiliation(s)
| | | | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - C. Rose Kennedy
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Xi L, Fang X, Wang M, Shi Z. Asymmetric 2,3-Addition of Sulfinylamines with Arylboronic Acids Enabled by Nickel Catalysis. J Am Chem Soc 2024; 146:17587-17594. [PMID: 38913452 DOI: 10.1021/jacs.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Sulfinamides have been widely used in organic synthesis, with research on their preparation spanning more than a century. Despite advancements in catalytic methodologies, creating sulfur stereocenters within these molecules remains a significant challenge. In this study, we present an effective and versatile method for synthesizing a diverse range of S-chirogenic sulfinamides through catalytic asymmetric aryl addition to sulfinylamines. By utilizing a nickel complex as a catalyst, this process exhibits impressive enantioselectivity and can incorporate various arylboronic acids at the sulfur position. The resulting synthetic sulfinamides are stable and highly adaptable, allowing for their conversion to a variety of sulfur-containing compounds. Our study also incorporates detailed experimental and computational studies to elucidate the reaction mechanism and factors influencing enantioselectivity.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Yang J, Neary MC, Diao T. ProPhos: A Ligand for Promoting Nickel-Catalyzed Suzuki-Miyaura Coupling Inspired by Mechanistic Insights into Transmetalation. J Am Chem Soc 2024; 146:6360-6368. [PMID: 38391156 PMCID: PMC10921396 DOI: 10.1021/jacs.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Nickel-catalyzed Suzuki-Miyaura coupling (Ni-SMC) offers the potential to reduce the cost of pharmaceutical process synthesis. However, its application has been restricted by challenges such as slow reaction rates, high catalyst loading, and a limited scope of heterocycles. Despite recent investigations, the mechanism of transmetalation in Ni-SMC, often viewed as the turnover-limiting step, remains insufficiently understood. We elucidate the "Ni-oxo" transmetalation pathway, applying PPh2Me as the ligand, and identify the formation of a nickel-oxo intermediate as the turnover-limiting step. Building on this insight, we develop a scaffolding ligand, ProPhos, featuring a pendant hydroxyl group connected to the phosphine via a linker. The design preorganizes both the nucleophile and the nickel catalyst, thereby facilitating transmetalation. This catalyst exhibits fast kinetics and robust activity across a wide range of heteroarenes, with a catalyst loading of 0.5-3 mol %. For arene substrates, the catalyst loading can be further reduced to 0.1 mol %.
Collapse
Affiliation(s)
- Jin Yang
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Michelle C. Neary
- Department
of Chemistry, CUNY − Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
4
|
Mills LR, Di Mare F, Gygi D, Lee H, Simmons EM, Kim J, Wisniewski SR, Chirik PJ. Phenoxythiazoline (FTz)-Cobalt(II) Precatalysts Enable C(sp 2 )-C(sp 3 ) Bond-Formation for Key Intermediates in the Synthesis of Toll-like Receptor 7/8 Antagonists. Angew Chem Int Ed Engl 2023:e202313848. [PMID: 37917119 DOI: 10.1002/anie.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Evaluation of the relative rates of the cobalt-catalyzed C(sp2 )-C(sp3 ) Suzuki-Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(Oi Pr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Francesca Di Mare
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David Gygi
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Agarwal S, Bairagi S, Khatun MM, Deori K. Hierarchical NiZn Solid Solution as a Highly Efficient Palladium Free Heterogeneous Catalyst for Suzuki-Miyaura Cross-Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41073-41080. [PMID: 37583262 DOI: 10.1021/acsami.3c06500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this report, surfactant free solid solution of NiZn with a hierarchical architecture was synthesized via a one-pot colloidal approach. Evidence supporting hierarchical crystal growth and alloying of metals at the atomic level was obtained from field emission scanning electron microscopy and transmission electron microscopy-energy-dispersive X-ray data. Lattice sites of face-centered metallic Ni were found to be occupied by Zn as evident from powder X-ray diffraction where a gradual shift in the peak position and increase in the average lattice parameter upon reduction of the Ni content in the alloy samples can be observed. This well-alloyed, magnetically separable, non-noble metal-based solid solution has the potential to replace the palladium-based catalyst in the Suzuki-Miyaura cross-coupling of aryl halides (-Cl/-Br) and phenylboronic acid. The nanostructured catalyst was formed through the assembly of a triangular spiked and sheet-like structure and is magnetically well separable that is stable enough under the catalytic reaction condition. The developed heterogeneous catalyst and the designed economical catalytic model are the first ever reported work. The catalytic results outperformed most of the reported state-of-the-art works involving the transition metal-based catalyst.
Collapse
Affiliation(s)
- Soniya Agarwal
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shyamolima Bairagi
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | | | - Kalyanjyoti Deori
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
6
|
Olding A, Ho CC, Lucas NT, Canty AJ, Bissember AC. Pretransmetalation Intermediates in Suzuki–Miyaura C–C and Carbonylative Cross-Couplings: Synthesis and Structural Authentication of Aryl- and Aroylnickel(II) Boronates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Angus Olding
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Curtis C. Ho
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Nigel T. Lucas
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Allan J. Canty
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C. Bissember
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
7
|
Haibach MC, Ickes AR, Tcyrulnikov S, Shekhar S, Monfette S, Swiatowiec R, Kotecki BJ, Wang J, Wall AL, Henry RF, Hansen EC. Enabling Suzuki-Miyaura coupling of Lewis-basic arylboronic esters with a nonprecious metal catalyst. Chem Sci 2022; 13:12906-12912. [PMID: 36519062 PMCID: PMC9645418 DOI: 10.1039/d2sc03877c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2024] Open
Abstract
The high cost and negative environmental impact of precious metal catalysts has led to increased demand for nonprecious alternatives for widely practiced reactions such as the Suzuki-Miyaura coupling (SMC). Ni-catalyzed versions of this reaction have failed to achieve high reactivity with Lewis-basic arylboron nucleophiles, especially pinacolboron esters. We describe the development of (PPh2Me)2NiCl2 as an inexpensive and air-stable precatalyst that addresses this challenge. Under activation by n-BuMgCl, this complex can catalyze the coupling of synthetically important heteroaryl pinacolborons with heteroaryl halides. Mildly basic conditions (aqueous K3PO4) allow the reaction to tolerate sensitive functional groups that were incompatible with other Ni-SMC methods. Experimental and computational studies suggest that catalyst inhibition by substitution of PPh2Me from Ni(ii) intermediates by Lewis basic reactants and products is disfavored relative to more commonly employed ligands in the Ni-SMC, which allows it to operate efficiently in the presence of Lewis bases such as unhindered pyridines.
Collapse
Affiliation(s)
- Michael C Haibach
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Andrew R Ickes
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| | - Rafal Swiatowiec
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Brian J Kotecki
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Jason Wang
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Amanda L Wall
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Rodger F Henry
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Eric C Hansen
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| |
Collapse
|
8
|
Newman-Stonebraker SH, Wang JY, Jeffrey PD, Doyle AG. Structure-Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings. J Am Chem Soc 2022; 144:19635-19648. [PMID: 36250758 DOI: 10.1021/jacs.2c09840] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dialkyl-ortho-biaryl class of phosphines, commonly known as Buchwald-type ligands, are among the most important phosphines in Pd-catalyzed cross-coupling. These ligands have also been successfully applied to several synthetically valuable Ni-catalyzed cross-coupling methodologies and, as demonstrated in this work, are top performing ligands in Ni-catalyzed Suzuki Miyaura Coupling (SMC) and C-N coupling reactions, even outperforming commonly employed bisphosphines like dppf in many circumstances. However, little is known about their structure-reactivity relationships (SRRs) with Ni, and limited examples of well-defined, catalytically relevant Ni complexes with Buchwald-type ligands exist. In this work, we report the analysis of Buchwald-type phosphine SRRs in four representative Ni-catalyzed cross-coupling reactions. Our study was guided by data-driven classification analysis, which together with mechanistic organometallic studies of structurally characterized Ni(0), Ni(I), and Ni(II) complexes allowed us to rationalize reactivity patterns in catalysis. Overall, we expect that this study will serve as a platform for further exploration of this ligand class in organonickel chemistry as well as in the development of new Ni-catalyzed cross-coupling methodologies.
Collapse
Affiliation(s)
- Samuel H Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Guo X, Dang H, Wisniewski SR, Simmons EM. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Facilitated by a Weak Amine Base with Water as a Cosolvent. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuelei Guo
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Hester Dang
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
10
|
Zell D, Kingston C, Jermaks J, Smith SR, Seeger N, Wassmer J, Sirois LE, Han C, Zhang H, Sigman MS, Gosselin F. Stereoconvergent and -divergent Synthesis of Tetrasubstituted Alkenes by Nickel-Catalyzed Cross-Couplings. J Am Chem Soc 2021; 143:19078-19090. [PMID: 34735129 DOI: 10.1021/jacs.1c08399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the development of a method to diastereoselectively access tetrasubstituted alkenes via nickel-catalyzed Suzuki-Miyaura cross-couplings of enol tosylates and boronic acid esters. Either diastereomeric product was selectively accessed from a mixture of enol tosylate starting material diastereomers in a convergent reaction by judicious choice of the ligand and reaction conditions. A similar protocol also enabled a divergent synthesis of each product isomer from diastereomerically pure enol tosylates. Notably, high-throughput optimization of the monophosphine ligands was guided by chemical space analysis of the kraken library to ensure a diverse selection of ligands was examined. Stereoelectronic analysis of the results provided insight into the requirements for reactive and selective ligands in this transformation. The synthetic utility of the optimized catalytic system was then probed in the stereoselective synthesis of various tetrasubstituted alkenes, with yields up to 94% and diastereomeric ratios up to 99:1 Z/E and 93:7 E/Z observed. Moreover, a detailed computational analysis and experimental mechanistic studies provided key insights into the nature of the underlying isomerization process impacting selectivity in the cross-coupling.
Collapse
Affiliation(s)
- Daniel Zell
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Cian Kingston
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Janis Jermaks
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sleight R Smith
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Natalie Seeger
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jana Wassmer
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lauren E Sirois
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chong Han
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Payard PA, Bohn A, Tocqueville D, Jaouadi K, Escoude E, Ajig S, Dethoor A, Gontard G, Perego LA, Vitale M, Ciofini I, Wagschal S, Grimaud L. Role of dppf Monoxide in the Transmetalation Step of the Suzuki–Miyaura Coupling Reaction. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pierre-Adrien Payard
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Antoine Bohn
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Tocqueville
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Khaoula Jaouadi
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Emile Escoude
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sanaa Ajig
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Annie Dethoor
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Luca Alessandro Perego
- Discovery Product Development and Supply, Janssen Pharmaceutica, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Maxime Vitale
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ilaria Ciofini
- PSL University, Institute of Chemistry for Health and Life Sciences, I-CLeHS, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05 (France)
| | - Simon Wagschal
- Discovery Product Development and Supply, Janssen Pharmaceutica, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Laurence Grimaud
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
12
|
Nasibipour M, Safaei E, Moaddeli A, Masoumpour MS, Wojtczak A. Biradical o-iminobenzosemiquinonato(1-) complexes of nickel(ii): catalytic activity in three-component coupling of aldehydes, amines and alkynes. RSC Adv 2021; 11:12845-12859. [PMID: 35423810 PMCID: PMC8697240 DOI: 10.1039/d0ra10248b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The six-coordinated bis-o-iminosemiquinone complex, NiL2 BIS, in which LBIS is the o-iminosemiquinone 1-electron oxidized form of the tridentate o-aminophenol benzoxazole-based ligand H2LBAP, was synthesized and characterized. The crystal structure of the complex reveals octahedral geometry with a NiN4O2 coordination sphere in which Ni(ii) has been surrounded by two tridentate LBIS ligands. This compound exhibits (S Ni = 1) with both spin and orbital contribution to the magnetic moment and antiferromagnetic coupling between two electrons on two LBIS ligands which results in a triplet spin ground state (S = 1). The electronic transitions and the electrochemical behavior of this open-shell molecule are presented here, based on experimental observations and theoretical calculations. The electrochemical behavior of NiL2 BIS was investigated by cyclic voltammetry and indicates ligand-centered redox processes. Three-component coupling of aldehydes, amines and alkynes (A3-coupling) was studied in the presence of the NiL2 BIS complex, and the previously reported four-coordinated bis-o-iminosemiquinone NiL2 NIS. Furthermore, among these two o-iminobenzosemiquinonato(1-) complexes of Ni(ii) (NiL2 NIS and NiL2 BIS), NiL2 NIS was found to be an efficient catalyst in A3-coupling at 85 °C under solvent-free conditions and can be recovered and reused for several cycles with a small decrease in activity.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Ali Moaddeli
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|
13
|
Deciphering the dichotomy exerted by Zn(ii) in the catalytic sp2 C–O bond functionalization of aryl esters at the molecular level. Nat Catal 2021. [DOI: 10.1038/s41929-020-00560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Nasibipour M, Safaei E, Masoumpour MS, Wojtczak A. Ancillary ligand electro-activity effects towards phenyl acetylene homocoupling reaction by a nickel(ii) complex of a non-innocent O-amino phenol ligand: a mechanistic insight. RSC Adv 2020; 10:24176-24189. [PMID: 35516191 PMCID: PMC9055111 DOI: 10.1039/d0ra04362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
A new Ni(ii) complex, was synthesized from the reaction of a non-innocent o-aminophenol ligand, and Ni(OAc)2. The crystal structure of NiIIL2 NIS (in which, IS stands for iminosemiquinone radical ligand with cyanide (shown by N in NIS) substituent on phenolate rings) exhibits the square planar environment of Ni(ii). The complex has been crystalized in the monoclinic system and Ni(ii) was surrounded by two oxygen and two nitrogen atoms of two ligands. Variable-temperature magnetic susceptibility measurement for crystalline samples of complex shows the effective magnetic moment per molecule (μ eff) of near zero and the diamagnetic nature of the complex (S = 0) which emphasize that strong antiferromagnetic coupling prevailed between the two unpaired electrons of LNIS ligands and Ni(ii) high spin electrons. The complex is EPR silent which confirms the diamagnetic character of the Ni(ii) complex. Electrochemical measurement (CV) indicates the redox-active character of ligand and metal. NiIIL2 NIS complex proved to be effective for free metal- or base counterpart homocoupling of phenyl acetylene at room temperature. To the best of our knowledge, this is the first example of using Ni(ii) complex without using any reducing agent due to the promotion ancillary effect of non-innocent o-aminophenol ligand which acts as an "electron reservoir" and can reversibly accept and donate electrons in the catalytic cycle. The theoretical calculation confirms the magnetostructure, electronic spectrum and confirmed the suggested mechanism of phenyl acetylene homocoupling with emphasis on the role of non-innocent ligand electro-activity and the effect of ligand substituent on the efficiency and stability of the complex.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|
15
|
Lu Z, Hu XD, Zhang H, Zhang XW, Cai J, Usman M, Cong H, Liu WB. Enantioselective Assembly of Cycloenones with a Nitrile-Containing All-Carbon Quaternary Center from Malononitriles Enabled by Ni Catalysis. J Am Chem Soc 2020; 142:7328-7333. [PMID: 32255625 DOI: 10.1021/jacs.0c02075] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chiral nitriles are valuable molecules in modern organic synthesis and drug discovery. Selectively differentiating the two nitrile groups of widely available malononitrile derivatives is a straightforward yet underdeveloped route to construct enantioenriched nitriles. Here we report an enantioselective nickel-catalyzed desymmetrization of malononitriles for the generation of nitrile-containing all-carbon quaternary stereocenters. This protocol involves a nickel-catalyzed addition of aryl boronic acids to alkynes, followed by a selective nitrile insertion, providing unprecedented access to enantioenriched 5-7-membered α-cyano-cycloenones with a fully substituted olefin from a broad range of substrates. The synthetic utility of these nitrile products is demonstrated by gram-scale synthesis and conversion to several useful functional groups.
Collapse
Affiliation(s)
- Zhiwu Lu
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Xu-Dong Hu
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Hui Zhang
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Xiao-Wen Zhang
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Jinhui Cai
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Muhammad Usman
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Hengjiang Cong
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Wen-Bo Liu
- Sauvage Center for Molecule Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| |
Collapse
|
16
|
Martínez‐Prieto LM, Cámpora J. Nickel and Palladium Complexes with Reactive σ‐Metal‐Oxygen Covalent Bonds. Isr J Chem 2020. [DOI: 10.1002/ijch.202000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis M. Martínez‐Prieto
- Instituto de Tecnología Química. CSIC –Universidad Politécnica de Valencia Avda. Los Naranjos, S/N 46022 Valencia Spain
| | - Juan Cámpora
- Instituto de Investigaciones Químicas, CSIC –Universidad de Sevilla. C/ Américo Vespucio, 49. 41092 Seville Spain
| |
Collapse
|
17
|
Levitskiy OA, Magdesieva TV. Amination of Aryl Boronic Acids with Alkylnitrites: A Convenient Complement to Cu-Promoted Reductive Amination. Org Lett 2019; 21:10028-10032. [PMID: 31800249 DOI: 10.1021/acs.orglett.9b03961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-catalyzed amination of aryl boronic acids with alkylnitrites leading to symmetrical diarylamines with a practical 50-80% yield was elaborated. Two C(sp2)-N bonds are formed in the one-pot process under mild conditions. This new approach to diarylamines is a complement to the Cu-assisted reductive amination of aryl boronic acids avoiding preliminary synthesis of nitrosoarenes. The possible reaction scheme based on quantum chemical calculations was suggested, clarifying key intermediates.
Collapse
Affiliation(s)
- Oleg A Levitskiy
- Lomonosov Moscow State University , Leninskie Gory 1/3 , Moscow 119991 , Russia
| | | |
Collapse
|
18
|
Zhang C, Zhao R, Dagnaw WM, Liu Z, Lu Y, Wang ZX. Density Functional Theory Mechanistic Insight into the Base-Free Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling of Acid Fluoride: Concerted versus Stepwise Transmetalation. J Org Chem 2019; 84:13983-13991. [DOI: 10.1021/acs.joc.9b02154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoshen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihua Zhao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wasihun Menberu Dagnaw
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyuan Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0259-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
West MJ, Watson AJB. Ni vs. Pd in Suzuki-Miyaura sp 2-sp 2 cross-coupling: a head-to-head study in a comparable precatalyst/ligand system. Org Biomol Chem 2019; 17:5055-5059. [PMID: 31049539 DOI: 10.1039/c9ob00561g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Suzuki-Miyaura reaction is a cornerstone method for sp2-sp2 cross-coupling in industry. There has been a concerted effort to enable the use of Ni catalysis as an alternative to Pd in order to mitigate cost and improve sustainability. Despite significant advances, ligand development for Ni-catalyzed Suzuki-Miyaura cross-coupling remains underdeveloped when compared to Pd and, as a consequence, ligands for Ni-catalyzed processes are typically taken from the Pd arena. In this study we evaluate the effect of using a similar Ni and Pd precatalyst based on a common bidentate ligand (dppf) in a head-to-head format for the most common type of biaryl couplings, establishing the practical implications of direct replacement of Pd with Ni, and identifying the potential origins of these observations in a mechanistic context.
Collapse
Affiliation(s)
- Matthew J West
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
21
|
Desulfurization of dibenzothiophene and dibenzothiophene sulfone via Suzuki–Miyaura type reaction: Direct access to o-terphenyls and polyphenyl derivatives. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Beromi MM, Banerjee G, Brudvig GW, Charboneau DJ, Hazari N, Lant HMC, Mercado BQ. Modifications to the Aryl Group of dppf-Ligated Ni σ‑Aryl Precatalysts: Impact on Speciation and Catalytic Activity in Suzuki-Miyaura Coupling Reactions. Organometallics 2018; 37:3943-3955. [PMID: 31736532 DOI: 10.1021/acs.organomet.8b00589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is currently significant interest in the development of efficient nickel precatalysts for cross-coupling. In this work, 14 nickel(II) precatalysts of the form (dppf)Ni(aryl)(X) (dppf = 1,1'-bis(diphenylphosphino)-ferrocene, X = Cl, Br) were synthesized. In particular, both the electronic and steric properties of the aryl group were modified to understand how this affects precatalyst activation. Using EPR spectroscopy, it was demonstrated that the amount of off-cycle nickel(I) species which are formed via comproportionation during precatalyst activation varies depending on the nature of the aryl group. For example, sterically bulky aryl groups reduce comproportionation. Additionally, the catalytic activity of the family of precatalysts was evaluated in five different Suzuki-Miyaura coupling reactions. The results from these catalytic studies provide information about how precatalyst structure affects catalytic efficiency, which may be useful for the rational design of improved nickel precatalysts for cross-coupling.
Collapse
Affiliation(s)
- Megan Mohadjer Beromi
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Gourab Banerjee
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Gary W Brudvig
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - David J Charboneau
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Hannah M C Lant
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
Baker MA, Zahn SF, Varni AJ, Tsai CH, Noonan KJT. Elucidating the Role of Diphosphine Ligand in Nickel-Mediated Suzuki–Miyaura Polycondensation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matthew A. Baker
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213-2617, United States
| | - Sophia F. Zahn
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213-2617, United States
| | - Anthony J. Varni
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213-2617, United States
| | - Chia-Hua Tsai
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213-2617, United States
| | - Kevin J. T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213-2617, United States
| |
Collapse
|
24
|
Payard PA, Perego LA, Ciofini I, Grimaud L. Taming Nickel-Catalyzed Suzuki-Miyaura Coupling: A Mechanistic Focus on Boron-to-Nickel Transmetalation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00933] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre-Adrien Payard
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Luca Alessandro Perego
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- PSL Research University, Institut de Recherche de Chimie Paris IRCP, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05, France
| | - Ilaria Ciofini
- PSL Research University, Institut de Recherche de Chimie Paris IRCP, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05, France
| | - Laurence Grimaud
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
25
|
Nelson DJ, Nolan SP. Hydroxide complexes of the late transition metals: Organometallic chemistry and catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Wang L, Wang T, Dai C, Li Y, Wang C. Nickel-Catalysed Synthesis of 17-Arylandrosta-5,16-Dienes. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15094552081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient Ni-catalysed coupling reaction between arylboronic acids and 17-trifluoromethanesulfonyl- 3β-acetoxyandrosta-5,16-diene which was obtained by the sulfonylation of 3β-acetoxylandrost-5-ene-17-one was developed to afford 17-aryl- 3β-acetoxy-androsta-5,16-dienes in moderate to good yields (52–85%). The structure of the 3,4-dimethoxyaryl product was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Lizhong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, P.R. China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Chenlu Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| |
Collapse
|
27
|
Bajo S, Laidlaw G, Kennedy AR, Sproules S, Nelson DJ. Oxidative Addition of Aryl Electrophiles to a Prototypical Nickel(0) Complex: Mechanism and Structure/Reactivity Relationships. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00208] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sonia Bajo
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham
Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Gillian Laidlaw
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham
Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Alan R. Kennedy
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham
Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Stephen Sproules
- WestCHEM
School of Chemistry, University of Glasgow, University Place, Glasgow G12 8QQ, U.K
| | - David J. Nelson
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham
Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
28
|
Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJB. Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity. J Am Chem Soc 2017; 139:4769-4779. [PMID: 28266843 DOI: 10.1021/jacs.6b12800] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report an investigation of the Chan-Lam amination reaction. A combination of spectroscopy, computational modeling, and crystallography has identified the structures of key intermediates and allowed a complete mechanistic description to be presented, including off-cycle inhibitory processes, the source of amine and organoboron reactivity issues, and the origin of competing oxidation/protodeboronation side reactions. Identification of key mechanistic events has allowed the development of a simple solution to these issues: manipulating Cu(I) → Cu(II) oxidation and exploiting three synergistic roles of boric acid has allowed the development of a general catalytic Chan-Lam amination, overcoming long-standing and unsolved amine and organoboron limitations of this valuable transformation.
Collapse
Affiliation(s)
- Julien C Vantourout
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde , Glasgow G1 1XL, United Kingdom.,GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Haralampos N Miras
- School of Chemistry, WestCHEM, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Albert Isidro-Llobet
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Stephen Sproules
- School of Chemistry, WestCHEM, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Allan J B Watson
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde , Glasgow G1 1XL, United Kingdom
| |
Collapse
|
29
|
Suzuki-Miyaura cross-coupling of phenylboronic acid with aryl halides catalyzed by palladium and nickel species supported on alumina-based oxides. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Das P, Linert W. Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Hoover AJ, Lazari M, Ren H, Narayanam MK, Murphy JM, van Dam RM, Hooker JM, Ritter T. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging. Organometallics 2016; 35:1008-1014. [PMID: 27087736 PMCID: PMC4829938 DOI: 10.1021/acs.organomet.6b00059] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 01/06/2023]
Abstract
Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.
Collapse
Affiliation(s)
- Andrew J Hoover
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mark Lazari
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles , 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Hong Ren
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles , 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles , 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - R Michael van Dam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles , 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Tobias Ritter
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States; Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Vummaleti SVC, Talarico G, Nolan SP, Cavallo L, Poater A. How easy is CO2 fixation by M–C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)? Org Chem Front 2016. [DOI: 10.1039/c5qo00281h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A comparison between different M–C bonds (M = Cu(i), Ni(ii), Co(i), Rh(i) and Ir(i)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes.
Collapse
Affiliation(s)
- Sai V. C. Vummaleti
- KAUST Catalysis Center
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche
- Università di Napoli Federico II
- 80126 Napoli
- Italy
| | - Steven P. Nolan
- Chemistry Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17071 Girona
- Spain
| |
Collapse
|
33
|
Bhojane JM, Sarode SA, Nagarkar JM. Nickel–glycerol: an efficient, recyclable catalysis system for Suzuki cross coupling reactions using aryl diazonium salts. NEW J CHEM 2016. [DOI: 10.1039/c5nj01833a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A palladium free, chemoselective and environmentally benign protocol for a C–C bond formation reaction.
Collapse
|
34
|
Guard LM, Mohadjer Beromi M, Brudvig GW, Hazari N, Vinyard DJ. Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angew Chem Int Ed Engl 2015; 54:13352-6. [DOI: 10.1002/anie.201505699] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Louise M. Guard
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Megan Mohadjer Beromi
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Gary W. Brudvig
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - David J. Vinyard
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| |
Collapse
|
35
|
Guard LM, Mohadjer Beromi M, Brudvig GW, Hazari N, Vinyard DJ. Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505699] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Louise M. Guard
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Megan Mohadjer Beromi
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Gary W. Brudvig
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| | - David J. Vinyard
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520 (USA)
| |
Collapse
|
36
|
Abstract
The synthesis and catalytic activity of [(TMEDA)Ni(o-tolyl)Cl], an air-stable, crystalline solid, is described. This complex is an effective precatalyst in a variety of nickel-catalyzed transformations. The lability of TMEDA allows a wide variety of ligands to be used, including mono- and bidentate phosphines, diimines, and N-heterocyclic carbenes. Preliminary mechanistic studies are also reported, which suggest that [(TMEDA)Ni(o-tolyl)Cl] can activate by either a Ni-B or Ni-Ni transmetalation event, depending on the reaction conditions.
Collapse
Affiliation(s)
- Jason D. Shields
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erin E. Gray
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
Jezorek RL, Zhang N, Leowanawat P, Bunner MH, Gutsche N, Pesti AKR, Olsen JT, Percec V. Air-Stable Nickel Precatalysts for Fast and Quantitative Cross-Coupling of Aryl Sulfamates with Aryl Neopentylglycolboronates at Room Temperature. Org Lett 2014; 16:6326-9. [DOI: 10.1021/ol503061c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Na Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew H. Bunner
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nicholas Gutsche
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Aleksander K. R. Pesti
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - James T. Olsen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
38
|
Kim BS, Hussain MM, Hussain N, Walsh PJ. Palladium-catalyzed chemoselective allylic substitution, Suzuki-Miyaura cross-coupling, and allene formation of bifunctional 2-B(pin)-substituted allylic acetate derivatives. Chemistry 2014; 20:11726-39. [PMID: 25077980 PMCID: PMC4219321 DOI: 10.1002/chem.201402353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/11/2022]
Abstract
A formidable challenge at the forefront of organic synthesis is the control of chemoselectivity to enable the selective formation of diverse structural motifs from a readily available substrate class. Presented herein is a detailed study of chemoselectivity with palladium-based phosphane catalysts and readily available 2-B(pin)-substituted allylic acetates, benzoates, and carbonates. Depending on the choice of reagents, catalysts, and reaction conditions, 2-B(pin)-substituted allylic acetates and derivatives can be steered into one of three reaction manifolds: allylic substitution, Suzuki-Miyaura cross-coupling, or elimination to form allenes, all with excellent chemoselectivity. Studies on the chemoselectivity of Pd catalysts in their reactivity with boron-bearing allylic acetate derivatives led to the development of diverse and practical reactions with potential utility in synthetic organic chemistry.
Collapse
Affiliation(s)
- Byeong-Seon Kim
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA, Fax: +12155736743, Tel: +12155732875
| | - Mahmud M. Hussain
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA, Fax: +12155736743, Tel: +12155732875
| | - Nusrah Hussain
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA, Fax: +12155736743, Tel: +12155732875
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA, Fax: +12155736743, Tel: +12155732875
| |
Collapse
|