1
|
Nayek A, Dey S, Patra S, Rana A, Serrano PN, George SJ, Cramer SP, Ghosh Dey S, Dey A. Facile electrocatalytic proton reduction by a [Fe-Fe]-hydrogenase bio-inspired synthetic model bearing a terminal CN - ligand. Chem Sci 2024; 15:2167-2180. [PMID: 38332837 PMCID: PMC10848691 DOI: 10.1039/d3sc05397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
An azadithiolate bridged CN- bound pentacarbonyl bis-iron complex, mimicking the active site of [Fe-Fe] H2ase is synthesized. The geometric and electronic structure of this complex is elucidated using a combination of EXAFS analysis, infrared and Mössbauer spectroscopy and DFT calculations. The electrochemical investigations show that complex 1 effectively reduces H+ to H2 between pH 0-3 at diffusion-controlled rates (1011 M-1 s-1) i.e. 108 s-1 at pH 3 with an overpotential of 140 mV. Electrochemical analysis and DFT calculations suggests that a CN- ligand increases the pKa of the cluster enabling hydrogen production from its Fe(i)-Fe(0) state at pHs much higher and overpotential much lower than its precursor bis-iron hexacarbonyl model which is active in its Fe(0)-Fe(0) state. The formation of a terminal Fe-H species, evidenced by spectroelectrochemistry in organic solvent, via a rate determining proton coupled electron transfer step and protonation of the adjacent azadithiolate, lowers the kinetic barrier leading to diffusion controlled rates of H2 evolution. The stereo-electronic factors enhance its catalytic rate by 3 order of magnitude relative to a bis-iron hexacarbonyl precursor at the same pH and potential.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Subal Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Suman Patra
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Pauline N Serrano
- Department of Chemistry, University of California Davis CA 94616 USA
| | - Simon J George
- Department of Chemistry, University of California Davis CA 94616 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Stephen P Cramer
- Department of Chemistry, University of California Davis CA 94616 USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
2
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Orton GR, Ringenberg MR, Hogarth G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Ferrocene-bridged dithiolate complexes [Fe2(CO)6(μ-EC5H4FeC5H4E)] (E = S, Se). J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Sun L, Duboc C, Shen K. Bioinspired Molecular Electrocatalysts for H 2 Production: Chemical Strategies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lili Sun
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Carole Duboc
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Kaiji Shen
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| |
Collapse
|
5
|
Realini F, Elleouet C, Pétillon F, Schollhammer P. Tri‐ and tetra‐substituted derivatives of [Fe2(CO)6(µ‐dithiolate)] as novel dinuclear platforms related to the H‐cluster of [FeFe]H2ases. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Hogarth G, Orton G, Ghosh S, Sarker JC, Pugh D, Richmond MG, Hartl F, Alker L. Biomimetics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates. Dalton Trans 2022; 51:9748-9769. [DOI: 10.1039/d2dt00419d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-ase biomimics containing a redox-active ferrocenyl diphosphine have been prepared and their ability to reduce protons and oxidise H2 studied, including 1,1’-bis(diphenylphosphino)ferrocene (dppf) complexes Fe2(CO)4(-dppf)(-S(CH2)nS) (n = 2, edt; n...
Collapse
|
8
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
El-Dalatony MM, Zheng Y, Ji MK, Li X, Salama ES. Metabolic pathways for microalgal biohydrogen production: Current progress and future prospectives. BIORESOURCE TECHNOLOGY 2020; 318:124253. [PMID: 33129070 DOI: 10.1016/j.biortech.2020.124253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Microalgal biohydrogen (bioH2) has attracted global interest owing to its potential carbon-free source of sustainable renewable energy. Most of previous reviews which focused on microalgal bioH2, have shown unclear differentiation among the metabolic pathways. In this review, investigation of all different metabolic pathways for microalgal bioH2 production along with discussion on the recent research work of last 5-years have been considered. The major factors (such as light, vital nutrients, microalgal cell density, and substrate bioavailability) are highlighted. Moreover, effect of various pretreatment approaches on the constituent's bioaccessibility is reported. Microbial electrolysis cells as a new strategy for bioH2 production is stated. Comparison between the operation conditions of various bioreactors and economic feasibility is also emphasized. Genetic, metabolic engineering, and synthetic biology as recent technologies improved the microalgal bioH2 production through inactivation of uptake hydrogenase (H2ase), inhibition of the competing pathways in polysaccharide synthesis, and improving the O2 tolerant H2ase.
Collapse
Affiliation(s)
- Marwa M El-Dalatony
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Yuanzhang Zheng
- Department of Molecular Biology, School of Medicine Biochemistry, Indiana University, Indianapolis 46202, USA
| | - Min-Kyu Ji
- Environmental Assessment Group, Korea Environment Institute, Yeongi-gun 30147, South Korea
| | - Xiangkai Li
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Hobballah A, Lounissi S, Motei R, Elleouet C, Pétillon FY, Schollhammer P. Synthesis, Characterization and Electrochemical Reductive Properties of Complexes [Fe
2
(CO)
4
(κ
2
‐P
Ph
2
N
R
2
)(
µ
‐dithiolato)] Related to the H‐Cluster of [FeFe]‐H
2
ases. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmad Hobballah
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| | - Sondes Lounissi
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| | - Rachid Motei
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| | - Catherine Elleouet
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| | - François Y. Pétillon
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest‐Cedex 3 France
| |
Collapse
|
11
|
Zaffaroni R, Orth N, Ivanović‐Burmazović I, Reek JNH. Hydrogenase Mimics in M 12 L 24 Nanospheres to Control Overpotential and Activity in Proton-Reduction Catalysis. Angew Chem Int Ed Engl 2020; 59:18485-18489. [PMID: 32614491 PMCID: PMC7589440 DOI: 10.1002/anie.202008298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Hydrogenase enzymes are excellent proton reduction catalysts and therefore provide clear blueprints for the development of nature-inspired synthetic analogues. Mimicking their catalytic center is straightforward but mimicking the protein matrix around the active site and all its functions remains challenging. Synthetic models lack this precisely controlled second coordination sphere that provides substrate preorganization and catalyst stability and, as a result, their performances are far from those of the natural enzyme. In this contribution, we report a strategy to easily introduce a specific yet customizable second coordination sphere around synthetic hydrogenase models by encapsulation inside M12 L24 cages and, at the same time, create a proton-rich nano-environment by co-encapsulation of ammonium salts, effectively providing substrate preorganization and intermediates stabilization. We show that catalyst encapsulation in these nanocages reduces the catalytic overpotential for proton reduction by 250 mV as compared to the uncaged catalyst, while the proton-rich nano-environment created around the catalyst ensures that high catalytic rates are maintained.
Collapse
Affiliation(s)
- Riccardo Zaffaroni
- Homogeneous, Supramolecular and Bio-Inspired Catalysisvan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Nicole Orth
- Department of Chemistry and PharmacyFriedrich-Alexander-Universitaet ErlangenEgerlandstrasse 391058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyFriedrich-Alexander-Universitaet ErlangenEgerlandstrasse 391058ErlangenGermany
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysisvan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
12
|
Zaffaroni R, Orth N, Ivanović‐Burmazović I, Reek JNH. Hydrogenase Mimics in M
12
L
24
Nanospheres to Control Overpotential and Activity in Proton‐Reduction Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Riccardo Zaffaroni
- Homogeneous, Supramolecular and Bio-Inspired Catalysis van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Nicole Orth
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universitaet Erlangen Egerlandstrasse 3 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universitaet Erlangen Egerlandstrasse 3 91058 Erlangen Germany
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
13
|
DeSimone MA, Ilagan MRQ, Pike RD, Herber RH, Watson EJ. Syntheses, structures and mössbauer effect spectroscopy of triple-decker complexes incorporating decamethylferrocene. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry; University of Delhi; 110007 Delhi India
| | | |
Collapse
|
15
|
Shimamura T, Maeno Y, Kubo K, Kume S, Greco C, Mizuta T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans 2019; 48:16595-16603. [PMID: 31651000 DOI: 10.1039/c9dt03427g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge. The molecular structure of 3 indicated that the trigonal plane of the NEt2 group was forced to face the Fe-Fe bond to avoid steric congestion with the naphthylene group linking the two phosphide groups. The NEt2 group could be protonated by p-toluenesulfonic acid. Density functional theory (DFT) calculations confirmed that the proton of the N(H)Et2 group adopted a position close to the bridging hydride. The DFT results for the ferrocene analogue 1, in which the 1,8-naphthylene group of 3 was replaced with the 1,1'-ferrocenylene group, also revealed that the most stable orientation of the protonated NHEt2 group was that in the protonated 3. As a result, electrochemical proton reduction reactions using complexes 1 and 3 proceeded with similar catalytic efficiencies. Unfortunately, the catalytic efficiencies (CEs) of these complexes were much lower than those of the complexes with a proton relay system of the terminal hydrogen, indicating that the reactive properties of the bridging hydride in the present proton relay system cannot exceed those of the terminal hydride.
Collapse
Affiliation(s)
- Takehiko Shimamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Barik CK, Tessensohn ME, Webster RD, Leong WK. Group VIII carbamoyl complexes as catalysts for alkyne hydrocarboxylation and electrochemical proton reduction. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Zaffaroni R, Dzik WI, Detz RJ, van der Vlugt JI, Reek JNH. Proton Relay Effects in Pyridyl‐Appended Hydrogenase Mimics for Proton Reduction Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Riccardo Zaffaroni
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wojciech I. Dzik
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Remko J. Detz
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- ECN.TNO Energy Transition Studies Radarweg 60 1043 NT Amsterdam The Netherlands
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
19
|
Nurttila SS, Zaffaroni R, Mathew S, Reek JNH. Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chem Commun (Camb) 2019; 55:3081-3084. [PMID: 30785463 DOI: 10.1039/c9cc00901a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen as a renewable fuel is viable when produced sustainably via proton reduction catalysis (PRC). Many homogeneous electrocatalysts perform PRC with high rates, but they all require a large overpotential to drive the reaction. Natural hydrogenase enzymes achieve reversible PRC with potentials close to the thermodynamic equilibrium through confinement of the active site in a well-defined protein pocket. Inspired by nature, we report a strategy that relies on the selective encapsulation of a synthetic hydrogenase mimic in a novel supramolecular cage. Catalyst confinement decreases the PRC overpotential by 150 mV, and is proposed to originate from the cationic cage stabilizing anionic reaction intermediates within the catalytic cycle.
Collapse
Affiliation(s)
- Sandra S Nurttila
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. INORGANICS 2019. [DOI: 10.3390/inorganics7030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic potential of linked redox centres is exemplified by the catalytic site of [FeFe]-hydrogenases, which feature a diiron subsite linked by a cysteinyl S atom to a 4Fe4S cube. The investigation of systems possessing similarly-linked redox sites is important because it provides a context for understanding the biological system and the rational design of abiological catalysts. The structural, electrochemical and spectroscopic properties of Fe2(CO)5(CH3C(CH2S)2CH2SPhNO2, I-bzNO2 and the aniline analogue, I-bzNH2, are described and IR spectroelectrochemical studies have allowed investigation of the reduction products and their reactions with CO and protons. These measurements have allowed identification of the nitrobenzenyl radical anion, quantification of the shifts of the (CO) bands on ligand-based reduction compared with NO2/NH2 exchange and protonation of the pendent ligand. The strength of thioether coordination is related to the electronic effects, where competitive binding studies with CO show that CO/thioether exchange can be initiated by redox processes of the pendent ligand. Stoichiometric multi electron/proton transfer reactions of I-bzNO2 localised on nitrobenzene reductions occur at mild potentials and a metal-centred reduction in the presence of protons does not lead to significant electrocatalytic proton reduction.
Collapse
|
21
|
Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe2(CO)3(μ-dithiolate)(μ,κ1,κ2-triphos). Dalton Trans 2019; 48:6174-6190. [DOI: 10.1039/c9dt00700h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Fe2(triphos)(CO)3(μ-dithiolate) complexes have been prepared and studied as models of the diiron centre in [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- David G. Unwin
- Department of Chemistry
- University College London
- London
- UK
| | - Shishir Ghosh
- Department of Chemistry
- University College London
- London
- UK
- Department of Chemistry
| | - Faith Ridley
- Department of Chemistry
- University College London
- London
- UK
| | | | | | | |
Collapse
|
22
|
Zaffaroni R, Detz RJ, van der Vlugt JI, Reek JNH. A Functional Hydrogenase Mimic Chemisorbed onto Fluorine-Doped Tin Oxide Electrodes: A Strategy towards Water Splitting Devices. CHEMSUSCHEM 2018; 11:209-218. [PMID: 29077275 PMCID: PMC5814736 DOI: 10.1002/cssc.201701757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Indexed: 06/07/2023]
Abstract
A diiron benzenedithiolate hydrogen-evolving catalyst immobilized onto fluorine-doped tin oxide (FTO) electrodes is prepared, characterized, and studied in the context of the development of water splitting devices based on molecular components. FTO was chosen as the preferred electrode material owing to its conductive properties and electrochemical stability. An FTO nanocrystalline layer is also used to greatly improve the surface area of commercially available FTO while preserving the properties of the material. Electrodes bearing a covalently anchored diiron catalyst are shown to be competent for electrocatalytic hydrogen evolution from acidic aqueous media at relatively low overpotential (500 mV) with a faradaic efficiency close to unity. Compared with bulk solution catalysts, the catalyst immobilized onto the electrode surface operates at roughly 160 mV lower overpotentials, yet with similar rates.
Collapse
Affiliation(s)
- Riccardo Zaffaroni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
23
|
Koch F, Berkefeld A. Reactant or reagent? Oxidation of H2 at electronically distinct nickel-thiolate sites [Ni2(μ-SR)2]+ and [Ni–SR]+. Dalton Trans 2018; 47:10561-10568. [DOI: 10.1039/c8dt00275d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chemical bond between a Lewis-acidic metal and a Brønsted/Lewis-basic sulphur donor provides M–S structures with functional properties that are relevant for a variety of processes such as the heterolytic cleavage of H2.
Collapse
Affiliation(s)
- Felix Koch
- Institut für Anorganische Chemie
- Eberhard Karls Universität Tübingen
- 72076 Tübingen
- Germany
| | - Andreas Berkefeld
- Institut für Anorganische Chemie
- Eberhard Karls Universität Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
24
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Aust J Chem 2017; 70:505-515. [PMID: 28819328 PMCID: PMC5555595 DOI: 10.1071/ch16614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = -S(CH2)3S-; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
26
|
Roy S, Laureanti JA, Groy TL, Jones AK. Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Souvik Roy
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Joseph A. Laureanti
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Thomas L. Groy
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Anne K. Jones
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| |
Collapse
|
27
|
Katz S, Noth J, Horch M, Shafaat HS, Happe T, Hildebrandt P, Zebger I. Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Chem Sci 2016; 7:6746-6752. [PMID: 28451119 PMCID: PMC5355867 DOI: 10.1039/c6sc01098a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022] Open
Abstract
[FeFe] hydrogenases are biocatalytic model systems for the exploitation and investigation of catalytic hydrogen evolution. Here, we used vibrational spectroscopic techniques to characterize, in detail, redox transformations of the [FeFe] and [4Fe4S] sub-sites of the catalytic centre (H-cluster) in a monomeric [FeFe] hydrogenase. Through the application of low-temperature resonance Raman spectroscopy, we discovered a novel metastable intermediate that is characterized by an oxidized [FeIFeII] centre and a reduced [4Fe4S]1+ cluster. Based on this unusual configuration, this species is assigned to the first, deprotonated H-cluster intermediate of the [FeFe] hydrogenase catalytic cycle. Providing insights into the sequence of initial reaction steps, the identification of this species represents a key finding towards the mechanistic understanding of biological hydrogen evolution.
Collapse
Affiliation(s)
- S Katz
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - J Noth
- Fakultaet für Biologie und Biotechnologie , Lehrstuhl für Biochemie der Pflanzen , AG Photobiotechnologie , Ruhr-Universitaet Bochum , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - M Horch
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - H S Shafaat
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 , Muelheim an der Ruhr , Germany
| | - T Happe
- Fakultaet für Biologie und Biotechnologie , Lehrstuhl für Biochemie der Pflanzen , AG Photobiotechnologie , Ruhr-Universitaet Bochum , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - P Hildebrandt
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - I Zebger
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| |
Collapse
|
28
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Roemer M, Skelton BW, Piggott MJ, Koutsantonis GA. 1,1′-Diacetyloctamethylferrocene: an overlooked and overdue synthon leading to the facile synthesis of an octamethylferrocenophane. Dalton Trans 2016; 45:18817-18821. [DOI: 10.1039/c6dt03820d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surprisingly easy access to versatile synthons: high yielding acylation, chloroformylation and intramolecular cyclisation reaction to a ferrocenophane.
Collapse
Affiliation(s)
- Max Roemer
- Chemistry
- M310
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
| | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley
- Australia
| | - Matthew J. Piggott
- Chemistry
- M310
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
| | - George A. Koutsantonis
- Chemistry
- M310
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
| |
Collapse
|
30
|
Becker R, Amirjalayer S, Li P, Woutersen S, Reek JNH. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media. SCIENCE ADVANCES 2016; 2:e1501014. [PMID: 26844297 PMCID: PMC4737267 DOI: 10.1126/sciadv.1501014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 10(4) s(-1) at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability.
Collapse
Affiliation(s)
- René Becker
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - Saeed Amirjalayer
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
- Center for Nanotechnology (CeNTech) and Physikalisches Institut, Westfälische Wilhelms–Universität Münster, Münster 48149, Germany
| | - Ping Li
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - Joost N. H. Reek
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
| |
Collapse
|
31
|
Schwartz AJ, Pike RD, Herber RH, Watson EJ. Syntheses, Structures, and Mössbauer Effect Spectroscopy of Triple-Decker Complexes Incorporating Nonamethylferrocene. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J. Schwartz
- Department
of Chemistry, Seattle University, 901 12th Avenue, Seattle, Washington 98122, United States
| | - Robert D. Pike
- Department
of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187, United States
| | - Rolfe H. Herber
- Racah
Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eric J. Watson
- Department
of Chemistry, Seattle University, 901 12th Avenue, Seattle, Washington 98122, United States
| |
Collapse
|
32
|
Liu YC, Yen TH, Chu KT, Chiang MH. Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1115397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Hulley EB, Kumar N, Raugei S, Bullock RM. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elliott B. Hulley
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Neeraj Kumar
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Simone Raugei
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| |
Collapse
|
34
|
Rauchfuss TB. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc Chem Res 2015; 48:2107-16. [PMID: 26079848 DOI: 10.1021/acs.accounts.5b00177] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe] hydrogenases (H2ases) catalyze the redox reaction that interconverts protons and H2. This area of biocatalysis has attracted attention because the metal-based chemistry is unusual, and the reactions have practical implications. The active site consists of a [4Fe-4S] cluster bridged to a [Fe2(μ-dithiolate)(CN)2(CO)3](z) center (z = 1- and 2-). The dithiolate cofactor is [HN(CH2S)2](2-), called the azadithiolate ([adt(H)](2-)). Although many derivatives of Fe2(SR)2(CO)6-xLx are electrocatalysts for the hydrogen evolution reaction (HER), most operate by slow nonbiomimetic pathways. Biomimetic hydrogenogenesis is thought to involve intermediates, wherein the hydride substrate is adjacent to the amine of the adt(H), being bonded to only one Fe center. Formation of terminal hydride complexes is favored when the diiron carbonyl models contain azadithiolate. Although unstable in the free state, the adt cofactor is stable once it is affixed to the Fe2 center. It can be prepared by alkylation of Fe2(SH)2(CO)6 with formaldehyde in the presence of ammonia (to give adt(H) derivatives) or amines (to give adt(R) derivatives). Weak acids protonate Fe2(adt(R))(CO)2(PR3)4 to give terminal hydrido (term-H) complexes. In contrast, protonation of the related 1,3-propanedithiolate (pdt(2-)) complexes Fe2(pdt)(CO)2(PR3)4 requires strong acids. The amine in the azadithiolate is a kinetically fast base, relaying protons to and from the iron, which is a kinetically slow base. The crystal structure of the doubly protonated model [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) confirms the presence of both ammonium and terminal hydrido centers, which interact through a dihydrogen bond (dppv = cis-C2H2(PPh2)2). DFT calculations indicate that this H---H interaction is sensitive to the counterions and is strengthened upon reduction of the diiron center. For the monoprotonated models, the hydride [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) exists in equilibrium with the ammonium tautomer [Fe2(Hadt(H))(CO)2(dppv)2](+). Both [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) and [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) are highly active electrocatalysts for HER. Catalysis is initiated by reduction of the diferrous center, which induces coupling of the protic ammonium center and the hydride ligand. In contrast, the propanedithiolate [(term-H)Fe2(pdt)(CO)2(dppv)2](+) is a poor electrocatalyst for HER. Oxidation of H2 has been demonstrated, starting with models for the oxidized state ("Hox"), for example, [Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Featuring a distorted Fe(II)Fe(I) center, this Hox model reacts slowly with high pressures of H2 to give [(μ-H)Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Highlighting the role of the proton relay, the propanedithiolate [Fe2(pdt)(CO)3(dppv)(PMe3)](+) is unreactive toward H2. The Hox-model + H2 reaction is accelerated in the presence of ferrocenium salts, which simulate the role of the attached [4Fe-4S] cluster. The redox-complemented complex [Fe2(adt(Bn))(CO)3(dppv)(FcP*)](n+) catalyzes both proton reduction and hydrogen oxidation (FcP* = (C5Me5)Fe(C5Me4CH2PEt2)).
Collapse
Affiliation(s)
- Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Santo K, Hirotsu M, Kinoshita I. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties. Dalton Trans 2015; 44:4155-66. [DOI: 10.1039/c4dt03422h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox properties of C,S-bridged diiron complexes were controlled by using dibenzothienyl Schiff base precursors with an N,N- or N,P-chelating moiety.
Collapse
Affiliation(s)
- Kiyokazu Santo
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| | - Masakazu Hirotsu
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| | - Isamu Kinoshita
- Division of Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Sumiyoshi-ku
- Japan
| |
Collapse
|
36
|
Gan L, Jennings D, Laureanti J, Jones AK. Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|