1
|
Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01468-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe selective transformation of 1-alkenes into E-olefins is a long-standing challenge in olefin metathesis. Density functional theory (DFT) calculations predict high E-selectivity for catalysts incorporating a bidentate, dianionic thio-indolate ligand within a RuXX’(NHC)(py)(= CHR) platform (NHC = N-heterocyclic carbene; py = pyridine). Such complexes are predicted to yield E-olefins by favoring anti-disposed substituents in the transition state expected to be rate-determining: specifically, that for cycloreversion of the metallacyclobutane intermediate. Three pyridine-stabilized catalysts Ru21a-c were synthesized, in which the thio-indolate ligand bears a H, Me, or Ph substituent at the C2 position, and the NHC ligand is the unsaturated imidazoline-2-ylidene Me2IMes (which bears N-mesityl groups and methyl groups on the C4,5 backbone). Single-crystal X-ray diffraction analysis of Ru21c confirms the ligand orientation required for E-selective metathesis, with the thio-indolate sulfur atom binding cis to the NHC, and the indolate nitrogen atom trans to the NHC. However, whereas the new complexes mediated metathetic exchange of their 2-thienylmethylidene ligand in the presence of the common metathesis substrates styrene and allylbenzene, no corresponding self-metathesis products were obtained. Only small amounts of 2-butene (73% (Z)-2-butene) were obtained in self-metathesis of propene using Ru21a. Detailed DFT analysis of this process revealed that product release is surprisingly slow, limiting the reaction rate and explaining the low metathesis activity. With the barrier to dissociation of (Z)-2-butene being lower than that of (E)-2-butene, the calculations also account for the observed Z-selectivity of Ru21a. These findings provide guidelines for catalyst redesign in pursuit of the ambitious goal of E-selective 1-alkene metathesis.
Graphic abstract
Collapse
|
2
|
Sato Y, Kawata Y, Yasui S, Kayaki Y, Ikariya T. New Bifunctional Bis(azairidacycle) with Axial Chirality via Double Cyclometalation of 2,2'-Bis(aminomethyl)-1,1'-binaphthyl. Molecules 2021; 26:molecules26041165. [PMID: 33671758 PMCID: PMC7926664 DOI: 10.3390/molecules26041165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
As a candidate for bifunctional asymmetric catalysts containing a half-sandwich C–N chelating Ir(III) framework (azairidacycle), a dinuclear Ir complex with an axially chiral linkage is newly designed. An expedient synthesis of chiral 2,2′-bis(aminomethyl)-1,1′-binaphthyl (1) from 1,1-bi-2-naphthol (BINOL) was accomplished by a three-step process involving nickel-catalyzed cyanation and subsequent reduction with Raney-Ni and KBH4. The reaction of (S)-1 with an equimolar amount of [IrCl2Cp*]2 (Cp* = η5–C5(CH3)5) in the presence of sodium acetate in acetonitrile at 80 °C gave a diastereomeric mixture of new dinuclear dichloridodiiridium complexes (5) through the double C–H bond cleavage, as confirmed by 1H NMR spectroscopy. A loss of the central chirality on the Ir centers of 5 was demonstrated by treatment with KOC(CH3)3 to generate the corresponding 16e amidoiridium complex 6. The following hydrogen transfer from 2-propanol to 6 provided diastereomers of hydrido(amine)iridium retaining the bis(azairidacycle) architecture. The dinuclear chlorido(amine)iridium 5 can serve as a catalyst precursor for the asymmetric transfer hydrogenation of acetophenone with a substrate to a catalyst ratio of 200 in the presence of KOC(CH3)3 in 2-propanol, leading to (S)-1-phenylethanol with up to an enantiomeric excess (ee) of 67%.
Collapse
Affiliation(s)
- Yasuhiro Sato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (Y.S.); (Y.K.); (S.Y.)
- Hazardous Materials Laboratory, Research and Development Division, National Research Institute of Fire and Disaster, Jindaiji-higashimachi 4-35-3, Chofu, Tokyo 182-8508, Japan
| | - Yuichi Kawata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (Y.S.); (Y.K.); (S.Y.)
| | - Shungo Yasui
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (Y.S.); (Y.K.); (S.Y.)
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (Y.S.); (Y.K.); (S.Y.)
- Correspondence: ; Tel.: +81-3-5734-2881
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; (Y.S.); (Y.K.); (S.Y.)
| |
Collapse
|
3
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
4
|
Zeng L, Lin Y, Cui S. Indole‐
N
‐Carboxylic Acids and Indole‐
N
‐Carboxamides in Organic Synthesis. Chem Asian J 2020; 15:973-985. [DOI: 10.1002/asia.201901806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/07/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang University Hangzhou 310058 China
| | - Yuxin Lin
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang University Hangzhou 310058 China
| | - Sunliang Cui
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang University Hangzhou 310058 China
| |
Collapse
|
5
|
Ding L, Gao RD, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Cascade Dearomatization Reaction of Indoles with Propargyl Carbonate. Chemistry 2019; 25:4330-4334. [PMID: 30694590 DOI: 10.1002/chem.201900425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 12/28/2022]
Abstract
An intermolecular asymmetric cascade dearomatization reaction of indole derivatives with propargyl carbonate was developed. The challenges associated with both the chemoselectivity between the carbon and nitrogen nucleophile and the enantioselective control during the formation of an all-carbon quaternary stereogenic center were well addressed by a Pd catalytic system derived from the Feringa ligand. A series of enantioenriched multiply substituted fused indolenines were provided in good yields (71-86 %) with excellent enantioselectivity (91-96 % ee) and chemoselectivity (3/4>19:1 in most cases).
Collapse
Affiliation(s)
- Lu Ding
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Run-Duo Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Ohta S, Shimbayashi M, Miyamoto R, Okazaki M. Synthesis and Structure of a Bis(indolyl)-Coordinated Titanium Diamido Complex, and Its Catalytic Applications in the Intermolecular Hydroamination of Alkynes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shun Ohta
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Masaya Shimbayashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Ryo Miyamoto
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Masaaki Okazaki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
7
|
Yamamoto N, Sato Y, Kayaki Y, Ikariya T. Synthesis and Reactivity of Cp*Ir III Complexes with a C–S Chelate Displaying Metal/Sulfur Bifunctionality. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naoki Yamamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuhiro Sato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
- Hazardous Materials Laboratory, Research and Development Division, National Research Institute of Fire and Disaster, Jindaiji-higashimachi 4-35-3, Chofu, Tokyo 182-8508, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
8
|
Chen P, Li H, Yi H, Jia F, Yang L, Song S. Removal of graphene oxide from water by floc-flotation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Inagaki F, Maeda K, Nakazawa K, Mukai C. Construction of the Oxazolidinone Framework from Propargylamine and CO2
in Air at Ambient Temperature: Catalytic Effect of a Gold Complex Featuring an L2
/Z-Type Ligand. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fuyuhiko Inagaki
- Division of Pharmaceutical Sciences; Graduate School of Medical Sciences; Kanazawa University; Kakuma-machi 920-1192 Kanazawa Japan
| | - Kakeru Maeda
- Division of Pharmaceutical Sciences; Graduate School of Medical Sciences; Kanazawa University; Kakuma-machi 920-1192 Kanazawa Japan
| | - Kenta Nakazawa
- Division of Pharmaceutical Sciences; Graduate School of Medical Sciences; Kanazawa University; Kakuma-machi 920-1192 Kanazawa Japan
| | - Chisato Mukai
- Division of Pharmaceutical Sciences; Graduate School of Medical Sciences; Kanazawa University; Kakuma-machi 920-1192 Kanazawa Japan
| |
Collapse
|
10
|
Mills MR, Barnes CL, Bernskoetter WH. Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO2 Hydrogenation. Inorg Chem 2018; 57:1590-1597. [DOI: 10.1021/acs.inorgchem.7b02931] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Mills
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Kim J, Hong SH. Dual Activation of Nucleophiles and Electrophiles by N-Heterocyclic Carbene Organocatalysis: Chemoselective N-Imination of Indoles with Isocyanides. Org Lett 2017; 19:3259-3262. [DOI: 10.1021/acs.orglett.7b01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jungwon Kim
- Department of Chemistry,
College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea
| | - Soon Hyeok Hong
- Department of Chemistry,
College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea
| |
Collapse
|
12
|
Sato Y, Kayaki Y, Ikariya T. Comparative Study of Bifunctional Mononuclear and Dinuclear Amidoiridium Complexes with Chiral C-N Chelating Ligands for the Asymmetric Transfer Hydrogenation of Ketones. Chem Asian J 2016; 11:2924-2931. [PMID: 27480392 DOI: 10.1002/asia.201600955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 11/08/2022]
Abstract
A series of new bifunctional C-N chelating Ir complexes possessing a metal/NH group was synthesized by cyclometalation of optically active primary benzylic amines such as O-silylated (S)-2-amino-2-phenylethanols (1 a and 1 a'), (R)-5-amino-6,7,8,9-tetrahydro-5H-benzocycloheptene (1 b), and (R)-1-phenyl-2,2-dimethylpropylamine (1 c). Although treatment of KOtBu with the amine complexes originating from 1 a and 1 a' afforded amido-bridged dinuclear complexes (3 a and 3 a'), more sterically hindered complexes were solely transformed into the coordinatively unsaturated mononuclear amido complexes (3 b and 3 c), which can serve as real catalyst species in the asymmetric transfer hydrogenation. The structural difference in the C-N chelate framework markedly affected the catalytic performance. Among them, amido complex 3 c showed a pronounced ability to catalyze the transfer hydrogenation of acetophenone in 2-propanol, even at a low temperature of -30 °C. A hydridoiridium complex (4 c) was also identified in the reaction of 3 c in 2-propanol, which provides mechanistic insights into the enantiodiscriminating step in the hydrogen transfer to prochiral ketones.
Collapse
Affiliation(s)
- Yasuhiro Sato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
13
|
Takemoto S, Ito T, Yamazaki Y, Tsujita M, Matsuzaka H. Metal-ligand cooperative activation of element-hydrogen bonds (element = C, N, O, Cl, B) on a dinuclear ruthenium bridging imido complex. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Sato Y, Kayaki Y, Ikariya T. Cationic Iridium and Rhodium Complexes with C–N Chelating Primary Benzylic Amine Ligands as Potent Catalysts for Hydrogenation of Unsaturated Carbon–Nitrogen Bonds. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhiro Sato
- Department of Applied Chemistry, Graduate School of Science
and Engineering, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshihito Kayaki
- Department of Applied Chemistry, Graduate School of Science
and Engineering, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takao Ikariya
- Department of Applied Chemistry, Graduate School of Science
and Engineering, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Inagaki F, Okada Y, Matsumoto C, Yamada M, Nakazawa K, Mukai C. Energyless CO 2 Absorption, Generation, and Fixation Using Atmospheric CO 2. Chem Pharm Bull (Tokyo) 2016; 64:8-13. [DOI: 10.1248/cpb.c15-00793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fuyuhiko Inagaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yasuhiko Okada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Chiaki Matsumoto
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Masayuki Yamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Kenta Nakazawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Chisato Mukai
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|