1
|
Nowicki M, Zaranek M, Grzelak M, Pawluć P, Hoffmann M. Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride-A Combined DFT and Experimental Study. Int J Mol Sci 2023; 24:ijms24054924. [PMID: 36902355 PMCID: PMC10003527 DOI: 10.3390/ijms24054924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The reactions of vinyl arenes with hydrodisiloxanes in the presence of sodium triethylborohydride were studied using experimental and computational methods. The expected hydrosilylation products were not detected because triethylborohydrides did not exhibit the catalytic activity observed in previous studies; instead, the product of formal silylation with dimethylsilane was identified, and triethylborohydride was consumed in stoichiometric amounts. In this article, the mechanism of the reaction is described in detail, with due consideration given to the conformational freedom of important intermediates and the two-dimensional curvature of the potential energy hypersurface cross sections. A simple way to reestablish the catalytic character of the transformation was identified and explained with reference to its mechanism. The reaction presented here is an example of the application of a simple transition-metal-free catalyst in the synthesis of silylation products, with flammable gaseous reagents replaced by a more convenient silane surrogate.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zaranek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Magdalena Grzelak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Correspondence:
| |
Collapse
|
2
|
Gong Y, Mou Q, Peng D, Wang F, Qin J, Qin J, Ding Y. New insight into the mechanism of Pt(0)-catalyzed hydrosilylation reaction of (CH 3) 3SiH with CH 2CHSi(CH 3) 3. J Mol Graph Model 2022; 117:108294. [PMID: 35969936 DOI: 10.1016/j.jmgm.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The non-catalytic hydrosilylation reaction has much high activation energy due to large differences in the energy of HOMO-LUMO pairing and restriction of the orbital symmetry overlap. For Pt(0)-catalytic hydrosilylation, the electronic structure of Me3SiH has been modified by the oxidative addition of Pt(0). It not only narrows down the energy differences between the bonding orbitals but also improves the orbital overlap symmetry, leading to the effective decrease of the activation energy. The trouble for the Pt(0)-catalytic hydrosilylation is the formation of the majority of the Pt-containing intermediates. Because they are fallen into the deep potential-energy, the reductive eliminations are energetically prohibitive, which is the essence of Pt-contamination. The reductive elimination can be achieved with the ligand exchange method, and the energy barrier can be tuned by suitable ligands.
Collapse
Affiliation(s)
- Yingying Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Qiuhong Mou
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Dan Peng
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Feng Wang
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Jining Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Jiaqi Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yunqiao Ding
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
3
|
Yu D, Shing KP, Liu Y, Liu H, Che CM. Ruthenium porphyrin catalysed intermolecular amino-oxyarylation of alkenes to give primary amines via a ruthenium nitrido intermediate. Chem Commun (Camb) 2019; 56:137-140. [PMID: 31799545 DOI: 10.1039/c9cc08043k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium porphyrin catalysed direct intermolecular amino-oxyarylation of alkenes including styrenes and 1,3-dienes to give primary amines with O-(2,4-dinitrophenyl)hydroxylamine as the amine source was achieved in moderate to good yields under mild reaction conditions. Spectroscopic analyses revealed that a ruthenium nitrido complex was the key reaction intermediate for the amino-oxyarylation reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | | | | | | | | |
Collapse
|
4
|
Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem Rev 2019; 119:6509-6560. [DOI: 10.1021/acs.chemrev.9b00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Seihwan Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Iglesias M, Fernández-Alvarez FJ, Oro LA. Non-classical hydrosilane mediated reductions promoted by transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Chen H, Fang S, Wang J, Wei H. Nitrido complex of high-valent Ru(VI) -catalyzed reduction of imines and alkynes with hydrosilanes: A theoretical study of the reaction mechanism. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Pérez DE, Smeltz JL, Sommer RD, Boyle PD, Ison EA. Cationic rhenium(iii) complexes: synthesis, characterization, and reactivity for hydrosilylation of aldehydes. Dalton Trans 2018; 46:4609-4616. [PMID: 28322396 DOI: 10.1039/c7dt00271h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel cationic Re(iii) complexes [(DAAm)Re(CO)(NCCH3)2][X] [DAAm = N,N-bis(2-arylaminoethyl)methylamine; aryl = C6F5 (a), Mes (b)] [X = OTf (2), BArF4 [BArF4 = tetrakis[3,5-(trifluoromethyl)phenyl]borate] (3), BF4 (4), PF6 (5)], and their analogue [(DAmA)Re(CO)(Cl)2] [DAmA = N,N-bis(2-arylamineethyl)methylamino; aryl = C6F5] (6) were synthesized. The catalytic efficiency for the hydrosilylation reaction of aldehydes using 4a (0.03 mol%) has been demonstrated to be significantly more active than rhenium catalysts previously reported in the literature. The data suggest that electron-withdrawing substituents at the diamido amine ligand increase the catalytic efficiency of the complexes. Excellent yields were achieved at ambient temperature under neat conditions using dimethylphenylsilane. The reaction affords TONs of up to 9200 and a TOF of up to 126 h-1. Kinetic and mechanistic studies were performed, and the data suggest that the reaction is via a non-hydride ionic hydrosilylation mechanism.
Collapse
Affiliation(s)
- Damaris E Pérez
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| | - Jessica L Smeltz
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| | - Roger D Sommer
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| | - Paul D Boyle
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| | - Elon A Ison
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
8
|
Fang S, Chen H, Wang W, Wei H. Mechanistic insights into the catalytic carbonyl hydrosilylation by cationic [CpM(CO)2(IMes)]+ (M = Mo, W) complexes: the intermediacy of η1-H(Si) metal complexes. NEW J CHEM 2018. [DOI: 10.1039/c7nj03856a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ionic SN2-type mechanistic pathway initiated by silane end-on coordination on the metal centers, forming η1-H(Si) Mo/W complexes, is the preferred reaction pathway for the two cationic cyclopentadienyl molybdenum/tungsten complexes, [CpM(CO)2(IMes)]+ (M = Mo, W) in catalyzing carbonyl hydrosilylation.
Collapse
Affiliation(s)
- Shaoqin Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Provincial Key Laboratory for NSLSCS
- Jiangsu Key Laboratory of Biomedical Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Hongcai Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Provincial Key Laboratory for NSLSCS
- Jiangsu Key Laboratory of Biomedical Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Wenmin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Provincial Key Laboratory for NSLSCS
- Jiangsu Key Laboratory of Biomedical Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Haiyan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Provincial Key Laboratory for NSLSCS
- Jiangsu Key Laboratory of Biomedical Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
9
|
Gryca I, Machura B, Shul’pina LS, Shul’pin GB. Synthesis, structures and catalytic activity of p-tolylimido rhenium(V) complexes incorporating quinoline-derived ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
|