1
|
Inglis CM, Manzano RA, Kirk RM, Sharma M, Stewart MD, Watson LJ, Hill AF. Poly(imidazolyliden-yl)borato Complexes of Tungsten: Mapping Steric vs. Electronic Features of Facially Coordinating Ligands. Molecules 2023; 28:7761. [PMID: 38067496 PMCID: PMC10798377 DOI: 10.3390/molecules28237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
A convenient synthesis of [HB(HImMe)3](PF6)2 (ImMe = N-methylimidazolyl) is decribed. This salt serves in situ as a precursor to the tris(imidazolylidenyl)borate Li[HB(ImMe)3] pro-ligand upon deprotonation with nBuLi. Reaction with [W(≡CC6H4Me-4)(CO)2(pic)2(Br)] (pic = 4-picoline) affords the carbyne complex [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}]. Interrogation of experimental and computational data for this compound allow a ranking of familiar tripodal and facially coordinating ligands according to steric (percentage buried volume) and electronic (νCO) properties. The reaction of [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] with [AuCl(SMe2)] affords the heterobimetallic semi-bridging carbyne complex [WAu(μ-CC6H4Me-4)(CO)2(Cl){HB(ImMe)3}].
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony F. Hill
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Ehweiner MA, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Oxygen Atom Transfer Reactivity of Molybdenum(VI) Complexes Employing Pyrimidine- and Pyridine-2-thiolate Ligands. Inorg Chem 2020; 59:14577-14593. [PMID: 32951421 DOI: 10.1021/acs.inorgchem.0c02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Fabian Wiedemaier
- Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
3
|
Burt LK, Hill AF. Heterobimetallic μ2-carbido complexes of platinum and tungsten. Dalton Trans 2020; 49:8143-8161. [DOI: 10.1039/d0dt01617a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tungsten–platinum μ-carbido complex [WPt(μ-C)Br(CO)2(PPh3)2(Tp*)] (Tp* = hydrotris(dimethylpyrazol-1-yl)borate) undergoes facile substitution of both bromide and phosphine ligands to afford a diverse library of μ-carbido complexes.
Collapse
Affiliation(s)
- Liam K. Burt
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
4
|
Abernethy RJ, Foreman MRSJ, Hill AF, Smith MK, Willis AC. Relative hemilabilities of H2B(az)2 (az = pyrazolyl, dimethylpyrazolyl, methimazolyl) chelates in the complexes [M(η-C3H5)(CO)2{H2B(az)2}] (M = Mo, W). Dalton Trans 2020; 49:781-796. [DOI: 10.1039/c9dt03744f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The question of B–H–Mo hemilability in a range of dihydrobis(azolyl)borate scorpionate ligands is discussed with reference to η3-allyl complexes [Mo(η3-C3H5)(CO)2{H2B(az)2}] [az = pyrazolyl (pz), dimethylpyrazolyl (pz*), mercaptoimidazolyl (mt)].
Collapse
Affiliation(s)
- Robyn J. Abernethy
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Mark R. St.-J. Foreman
- Nuclear Chemistry and Industrial Materials Recycling
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Matthew K. Smith
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Anthony C. Willis
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
5
|
Ehweiner MA, Vidovič C, Belaj F, Mösch-Zanetti NC. Bioinspired Tungsten Complexes Employing a Thioether Scorpionate Ligand. Inorg Chem 2019; 58:8179-8187. [PMID: 31141348 DOI: 10.1021/acs.inorgchem.9b00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and characterization of a series of novel tungsten complexes employing the bioinspired, sulfur-rich scorpionate ligand [PhTt] (phenyltris((methylthio)methyl)borate) are reported. Starting from the previously published tungsten precursor [WBr2(CO)3(NCMe)2], a salt metathesis reaction with 1 equiv of Cs[PhTt] led to the desired complex [WBr(CO)3(PhTt)] (1), making it the first tungsten complex employing a poly(thioether)borate ligand. Surprisingly, the reaction of [WBr2(CO)3(NCMe)2] with an excess of the ligand gave complex [W(CO)2(η2-CH2SMe)(PhTt)] (2) with a bidentate (methylthio)methanide ligand as the major product. Thereby, phenyldi((methylthio)methyl)borane is formed, which was isolated and characterized by NMR spectroscopy. The bromido ligand in [WBr(CO)3(PhTt)] was further substituted by the S,N-bidentate methimazole in order to make the first coordination sphere more sulfur-rich forming [W(CO)2(mt)(PhTt)] (3). Alkyne tungsten complexes employing the sulfur-rich scorpionate ligand were accessible by reaction of [WBr2(CO)(C2R2)2(NCMe)] (R = Me, Ph) with Cs[PhTt] forming [WBr(CO)(C2R2)2(PhTt- S, S')] (R = Me 4, Ph 5), with the potentially tridentate ligand coordinated only via two sulfur atoms. In the case of 4, the higher flexibility of the bidentate coordination leads to the formation of two isomers with respect to the six-membered ring formed by the tungsten center and the two coordinated sulfur atoms of the ligand. All complexes 1-5 were characterized by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Carina Vidovič
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry , University of Graz , Schubertstrasse 1 , 8010 Graz , Austria
| |
Collapse
|
6
|
Kreider-Mueller A, Rong Y, Owen JS, Parkin G. Molecular structures of tris(2-mercapto-1-tert-butylimidazolyl)hydroborato and tris(2-mercapto-1-adamantylimidazolyl)hydroborato sodium complexes: analysis of [Tm(R)] ligand coordination modes and conformations. Dalton Trans 2014; 43:10852-65. [PMID: 24898480 DOI: 10.1039/c4dt01271b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tris(mercaptoimidazolyl)hydroborato complexes, [κ(3)-S2H-Tm(Bu(t))]Na(THF)3 and [κ(3)-S2H-Tm(Ad)]Na(THF)3, which feature t-butyl and adamantyl substituents, have been synthesized via the reactions of the respective 1-R-1,3-dihydro-2H-imidazole-2-thiones with NaBH4 in THF (R = Bu(t), 1-Ad). X-ray diffraction studies indicate that the compounds are monomeric and that the [Tm(R)] ligands coordinate to the metal in a κ(3)-S2H manner via two of the sulfur donors and the hydrogen attached to boron, a combination that is unprecedented for sodium derivatives. Analysis of the tris(mercaptoimidazolyl)hydroborato compounds that are listed in the Cambridge Structural Database has allowed for the formulation of a set of criteria that enables κ(x)-S(x) and κ(x+1)-S(x)H coordination modes to be identified. Furthermore, the various κ(x)-S(x) and κ(x+1)-S(x)H coordination modes have also been analyzed with respect to the conformations of the [Tm(R)] ligands, which differ by rotation of the imidazolethione moieties about the B-N bond.
Collapse
Affiliation(s)
- Ava Kreider-Mueller
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
7
|
Rajasekharan-Nair R, Darby L, Reglinski J, Spicer MD, Kennedy AR. Nitric oxide species as oxidising agents and adducts for soft scorpionates. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Al-Harbi A, Rong Y, Parkin G. Synthesis and structural characterization of bis and tris(2-mercapto-1-methylbenzimidazolyl)hydroborato complexes: benzannulation promotes κ³-coordination. Dalton Trans 2013; 42:11117-27. [PMID: 23801309 DOI: 10.1039/c3dt51092a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The benzannulated bis and tris(mercaptoimidazolyl)borohydride compounds, [BmMeBenz]Na and [TmMeBenz]Na, have been synthesized via the reactions of NaBH4 with two and three equivalents of 1-methyl-1,3-dihydro-2H-benzimidazole-2-thione, respectively. X-ray diffraction studies on the THF adducts, {μ-[BmMeBenz]Na(THF)₂}₂ and {[TmMeBenz]Na}₂(μ-THF)₃, indicate that both compounds are dinuclear but differ according to the nature of the bridging ligand. Specifically, {μ-[BmMeBenz]Na(THF)₂}₂ possesses bridging [BmMeBenz] ligands and terminal THF ligands, while {[TmMeBenz]Na}₂(μ-THF)₃ possesses terminal [TmMeBenz] ligands and bridging THF ligands. The tris(mercaptoimidazolyl)borohydride ligand of {[TmMeBenz]Na}₂(μ-THF)₃ coordinates in a κ³-manner, which is in marked contrast to the κ²-, κ¹- and κ⁰-modes that have been reported for various [TmMe]Na derivatives. Density functional theory (DFT) geometry optimization calculations of the anions [TmMeBenz]⁻ and [TmMe]⁻ in the gas phase indicate that the conformation required for κ³-S₃ coordination, i.e. one in which the three sulfur donors point away from the B-H group, is relatively more stable for [TmMeBenz]⁻ than for [TmMe]⁻, and thus provides a rationalization for the observation that benzannulation enables κ³-coordination of tris(mercaptoimidazolyl)borohydride ligand in {[TmMeBenz]Na}₂(μ-THF)₃. Furthermore, comparison of the molecular structure and IR spectroscopic properties of [TmMeBenz]Re(CO)₃ with those of [TmMe]Re(CO)₃ indicates that benzannulation reduces the electron donating properties of the ligand, but has little effect on its steric properties. {μ-[BmMeBenz]Na(THF)₂}₂ and {[TmMeBenz]Na}₂(μ-THF)₃ react with [Me₃PCuCl]₄ to give [BmMeBenz]CuPMe₃ and [TmMeBenz]CuPMe₃, the first pair of structurally related bis and tris(mercaptoimidazolyl)hydroborato copper(I) compounds.
Collapse
Affiliation(s)
- Ahmed Al-Harbi
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
9
|
Kuan SL, Leong WK, Webster RD, Goh LY. Mixed-Sandwich (Cp*/(HMB))Ru Complexes Containing Bis(methimazolyl)(pyrazolyl)borate (Cp* = η5-C5Me5, HMB = η6-C6Me6). Organometallics 2012. [DOI: 10.1021/om300497p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Seah Ling Kuan
- Department
of Chemistry, National University of Singapore, Kent Ridge, Singapore 117543
| | - Weng Kee Leong
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
Singapore 637371
| | - Richard D. Webster
- Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
Singapore 637371
| | - Lai Yoong Goh
- ICP, UTAR Global Research
Network, Universiti Tunku Abdul Rahman,
46200 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Kuan SL, Leong WK, Webster RD, Goh LY. Mixed-Sandwich Cp*Cr Complexes Containing Poly(methimazolyl)borates (Cp* = C5Me5): Syntheses and Structural and Electrochemical Studies. Organometallics 2011. [DOI: 10.1021/om2008666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seah Ling Kuan
- Department of Chemistry, National University of Singapore, Kent
Ridge, Singapore 117543
| | - Weng Kee Leong
- Division of Chemistry
and Biological Chemistry, School of Physical and Mathematical
Sciences, 21 Nanyang Link, Nanyang Technological University, Singapore 637371
| | - Richard D. Webster
- Division of Chemistry
and Biological Chemistry, School of Physical and Mathematical
Sciences, 21 Nanyang Link, Nanyang Technological University, Singapore 637371
| | - Lai Yoong Goh
- UTAR Global Research Network, Universiti Tunku Abdul Rahman, 46200 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Hill AF, Lee SB, Park J, Shang R, Willis AC. Analogies between Metallaboratranes, Triboronates, and Boron Pincer Ligand Complexes. Organometallics 2010. [DOI: 10.1021/om100557q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Stephen B. Lee
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - James Park
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Rong Shang
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Anthony C. Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
12
|
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
| | - Horst Neumann
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
| | - Jörg Wagler
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
- Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, D-09596 Freiberg, Germany
| |
Collapse
|
13
|
Yurkerwich K, Coleman F, Parkin G. Bis(2-mercapto-1-R-imidazolyl)hydroborato complexes of aluminium, gallium, indium and thallium: compounds possessing gallium–gallium bonds and a trivalent thallium alkyl. Dalton Trans 2010; 39:6939-42. [DOI: 10.1039/c0dt00461h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Hill AF, Smith MK, Tshabang N, Willis AC. Bimetallic Dihydrobis(methimazolyl)borate Coordination: Structure [Mo2{μ2-H2B(mt)2}(CO)7][Au2(μ2-H2B(mt)2}](PEt3)2] (mt = methimazolyl). Organometallics 2009. [DOI: 10.1021/om900891a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Matthew K. Smith
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Never Tshabang
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Anthony C. Willis
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Mark D. Spicer
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK, Fax: +44‐141‐548‐4822
| | - John Reglinski
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK, Fax: +44‐141‐548‐4822
| |
Collapse
|
16
|
Cade IA, Hill AF, Tshabang N, Smith MK. Bimetallic Dihydrobis(methimazolyl)borate Coordination: Molecular Structure [Mo2Au{μ2-H2B(mt)2}(PPh3)(CO)7] (mt = methimazolyl). Organometallics 2009. [DOI: 10.1021/om8007647] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ian A. Cade
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Anthony F. Hill
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Never Tshabang
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| | - Matthew K. Smith
- Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia
| |
Collapse
|