2
|
Yousif M, Cabelof AC, Martin PD, Lord RL, Groysman S. Synthesis of a mononuclear, non-square-planar chromium(ii) bis(alkoxide) complex and its reactivity toward organic carbonyls and CO2. Dalton Trans 2016; 45:9794-804. [DOI: 10.1039/c6dt00279j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare non-square-planar mononuclear Cr(ii) bis(alkoxide) complex Cr(OR′)2(THF)2 is reported and its reactivity with organic carbonyls and CO2 is investigated.
Collapse
Affiliation(s)
- Maryam Yousif
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| | - Alyssa C. Cabelof
- Department of Chemistry
- Wayne State University
- Detroit
- USA
- Department of Chemistry
| | | | - Richard L. Lord
- Department of Chemistry
- Grand Valley State University
- Allendale
- USA
| | | |
Collapse
|
3
|
Wright AM, Zaman HT, Wu G, Hayton TW. Nitric oxide release from a nickel nitrosyl complex induced by one-electron oxidation. Inorg Chem 2013; 52:3207-16. [PMID: 23432419 DOI: 10.1021/ic302697v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reaction of [Ni(NO)(bipy)][PF6] (2) with AgPF6 or [NO][PF6] in MeCN results in formation of [Ni(bipy)x(MeCN)y](2+) and release of NO gas in moderate yields. In contrast, the addition of the inner sphere oxidant Ph2S2 to 2 does not result in denitrosylation. Instead, the diphenyldisulfide adduct [{(bipy)(NO)Ni}2(μ-S2Ph2)][PF6]2 (3) is formed in good yield. However, oxidation of 2 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) does results in cleavage of the Ni-NO bond and generation of NO. The metal-containing product, [(bipy)Ni(η(2)-TEMPO)][PF6] (4), can be isolated as an orange-brown solid in excellent yields. In the solid state, complex 4 contains a side-on bound TEMPO(-) ligand, which is characterized by a long N-O bond length [1.383(2) Å]. The contrasting reactivity of Ph2S2 and TEMPO likely relates to their different redox potentials, as Ph2S2 is a relatively weak oxidant. Finally, the addition of pyridine-N-oxide to 2 results in the formation of the adduct, [(bipy)Ni(NO)(ONC5H5)][PF6] (5). No evidence of NO release is observed in this reaction, probably because of the low one-electron (1e(-)) reduction potential of pyridine-N-oxide.
Collapse
Affiliation(s)
- Ashley M Wright
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
6
|
Cremer C, Burger P. Magnetic properties of cationic tungsten(IV) half sandwich compounds: experimental and theoretical study of a solvent and ligand stabilized singlet ground state leading to a thermally induced singlet-triplet spin state interconversion. J Am Chem Soc 2003; 125:7664-77. [PMID: 12812508 DOI: 10.1021/ja028313c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel neutral tungsten(III) and cationic tungsten(IV) complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)-bpy) ligands of the type [CpW(R(2)-bpy)Cl(2)](n+) (n = 0,1) were prepared and characterized by X-ray crystallography. Susceptibility measurements of the tungsten(IV) complexes revealed an intrinsic paramagnetism of these compounds and evidenced different magnetic properties of the dimethylamino and methyl (R = NMe(2), Me) substituted tungsten(IV) compounds in solution and in the solid state. In dichloromethane solution, singlet ground states with thermally populated triplet states were observed, whereas triplet (R = Me) and singlet ground states (R = NMe(2)) were observed in the solid state. Using both experimental and theoretical techniques (DFT) allowed to establish solvation and ligand effects to account for the different magnetic behavior. Thermodynamic parameters were derived for the spin equlibria in solution by fits of the temperature dependent (1)H NMR shifts to the Van Vleck equation and were found to be in excellent agreement with the DFT calculations.
Collapse
Affiliation(s)
- Christian Cremer
- Anorg.-chem. Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
7
|
Le Grognec E, Poli R. Diene-Containing half-sandwich MoIII complexes as ethylene polymerization catalysts: experimental and theoretical studies. Chemistry 2001; 7:4572-83. [PMID: 11757648 DOI: 10.1002/1521-3765(20011105)7:21<4572::aid-chem4572>3.0.co;2-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seventeen-electron compounds of MoIII having the general formula [(eta5-C5R5)Mo(eta4-diene)X2] (R = H, Me: dieney = butadiene, isoprene, or 2,3-dimethylbutadiene: X= Cl, CH3) are a new class of ethylene polymerization catalysts. The polyethylene obtained shows a bimodal distribution, the major weight fraction being characterized by very long (M around 10(6)) and highly linear polymer chains. The newly prepared pentamethylcyclopentadienyl (Cp*) derivatives are more active than the cyclopentadienyl (Cp) derivatives, but much less active than previously investigated niobiumIII compounds having the same stoichiometry. On the other hand, the turnover frequency of the active site leading to the high molecular weight chains is at least 10 times greater than that obtained with the corresponding Nb catalyst. The reason for the low activity is explained by a difficult activation process that is attributed to the low polarity and high strength of the Mo-alkyl bond. This is confirmed by a Mulliken charge analysis of density functional theory (DFT) geometry-optimized [CpM(eta4-C4H6)(CH3)2] (M = Nb, Mo) and by the calculation of the heterolytic bond dissociation energies. DFT calculations have also been carried out on the ethylene insertion coordinate for the [CpM(eta4-C4H6)(CH3)]+ model of the presumed active site. The results indicate an equivalent activation barrier to insertion for the Nb and Mo systems. Differences in optimized geometries for the reaction intermediates are attributed to the presence of the extra electron for the Mo system. This electron opposes the formation of M-H-C agostic interactions, while it strengthens the back-bonding M-ethylene interaction, but otherwise plays no active role in the polymer chain propagation mechanism. According to the calculations, the chain propagation for the Mo system occurs entirely on the spin doublet surface, the minimum energy crossover point with the quartet surface lying at a higher energy than the transition state for insertion on the doublet surface.
Collapse
Affiliation(s)
- E Le Grognec
- Laboratoire de Synthèse et d'Electrosynthese Organométallique, Faculté des Sciences Gabriel Université de Bourgogne Dijon, France
| | | |
Collapse
|
9
|
Costuas K, Saillard JY. Theoretical Investigation of Electron-Deficient and/or Paramagnetic Complexes Composed of the Cp*Fe(dppe) Unit and of Related Compounds. Organometallics 1999. [DOI: 10.1021/om990191i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karine Costuas
- LCSIM UMR 6511, Université de Rennes 1, 35042 Rennes Cedex, France
| | | |
Collapse
|
11
|
Jandciu EW, Kuzelka J, Legzdins P, Rettig SJ, Smith KM. Amide-Stabilized, Diamagnetic Chromium(II) Nitrosyl Complexes1. Organometallics 1999. [DOI: 10.1021/om980954m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric W. Jandciu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Jane Kuzelka
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Peter Legzdins
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Steven J. Rettig
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kevin M. Smith
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
12
|
Ruiz J, Ogliaro F, Saillard JY, Halet JF, Varret F, Astruc D. First 17−18−19-Electron Triads of Stable Isostructural Organometallic Complexes. The 17-Electron Complexes [Fe(C5R5)(arene)]2+ (R = H or Me), a Novel Family of Strong Oxidants: Isolation, Characterization, Electronic Structure, and Redox Properties. J Am Chem Soc 1998. [DOI: 10.1021/ja982342z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaime Ruiz
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| | - François Ogliaro
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| | - Jean-Yves Saillard
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| | - Jean-François Halet
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| | - François Varret
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| | - Didier Astruc
- Contribution from the Groupe de Chimie Supramoléculaire des Métaux de Transition, LCOO, UMR CNRS No. 5802, Université Bordeaux I, 33405 Talence Cedex, France, Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS No. 6511, Université de Rennes 1, 35042 Rennes Cedex, France, and Laboratoire de Magnétisme et d'Optique, URA CNRS No. 1531, Université de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|