1
|
Huang D, Yu J, Tian J, Cai H, Zhang W. Aptamer-Coupled Polymer-Grafted Fe 3O 4 Nanoparticles for Highly Efficient Isolation of Exosomes. Macromol Rapid Commun 2025:e2400819. [PMID: 39838740 DOI: 10.1002/marc.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Indexed: 01/23/2025]
Abstract
Exosomes, the bioactive particles secreted by various cells, are essential in mediating cellular communication. However, their small size and the interference from non-exosome proteins present significant hurdles for their rapid and non-destructive capture and release. To overcome these obstacles, a promising strategy to efficiently and selectively isolate exosomes from mesenchymal stem cells (MSCs) is developed by using CD63 aptamer-conjugated magnetic nanoparticles (Fe3O4-Aptamer). The Fe3O4 nanoparticles are first modified by RAFT polymerization of N-(methacryloyloxy) succinimide and oligoethylene glycol methacrylate, and subsequently, CD63 aptamers are grafted onto the surface of nanoparticles to produce Fe3O4-Aptamer. These aptamer units act as a "lock and key" recognition with the CD63 proteins on exosomes, enabling specific binding to exosomes. The Fe3O4-Aptamer can efficiently capture exosomes in a conditioned medium, and be easily collected by an external magnetic field, facilitating the facile collection and multiple-cycle reuse of Fe3O4-Aptamer. By introducing the complementary sequence of the CD63 aptamer, the captured exosomes can be rapidly released from Fe3O4-Aptamer because of the stronger binding affinity between the complementary sequence and the aptamers. When utilized for exosome isolation, the exosome-capture and release efficiency of Fe3O4-Aptamer can achieve up to ca. 82.9% and 96.1%, respectively. Thus, Fe3O4-Aptamer offers a promising and facile strategy for the highly efficient isolation of exosomes.
Collapse
Affiliation(s)
- Daqiang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China
| | - Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Siqueira JS, Crosley M, Reed WF. Observation and Modeling of a Sharp Oxygen Threshold in Aqueous Free Radical and RAFT Polymerization. J Phys Chem B 2022; 126:10933-10947. [PMID: 36520675 PMCID: PMC9806832 DOI: 10.1021/acs.jpcb.2c06067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is known that oxygen (O2) stops radical polymerization (RP). Here, it was found that the reaction turn-off occurs abruptly at a threshold concentration of O2, [O2]t, for both free RP and reversible addition-fragmentation chain-transfer polymerization (RAFT). In some reactions, there was a spontaneous re-start of conversion. Three cases were investigated: RP of (i) acrylamide (Am) and (ii) sodium styrene sulfonate (SS) and (iii) Am RAFT polymerization. A controlled flow of O2 into the reactor was employed. An abrupt turn-off was observed in all cases, where polymerization stops sharply at [O2]t and remains stopped when [O2] > [O2]t. In (i), Am acts as a catalytic radical-transfer agent during conversion plateau, eliminating excess [O2], and polymerization spontaneously resumes at [O2]t. In no reaction, the initiator alone was capable of eliminating O2. N2 purge was needed to re-start reactions (ii) and (iii). For (i) and (ii), while [O2] < [O2]t, O2 acts a chain termination agent, reducing the molecular weight (Mw) and reduced viscosity (RV). O2 acts as an inhibitor for [O2] > [O2]t in all cases. The radical-transfer rates from Am* and SS* to O2 are >10,000× higher than the initial chain propagation step rates for Am and SS, which causes [O2]t at very low [O2].
Collapse
Affiliation(s)
| | | | - Wayne F. Reed
- Tulane
University, New Orleans, Louisiana70118, United States
| |
Collapse
|
3
|
Watanabe T, Karita K, Manabe M, Ono T. Preparation of Monodisperse Poly(Methyl Methacrylate)/Polystyrene Composite Particles by Seeded Emulsion Polymerization Using a Sequential Flow Process. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.742447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We develop a sequential flow process for the production of monodisperse poly (methyl methacrylate) (PMMA)/polystyrene (PS) composite particles through a soap-free emulsion polymerization of methyl methacrylate (MMA) using the first water-in-oil (W/O) slug flow and a subsequent seeded emulsion polymerization of styrene (St) using the second W/O slug flow. In this process, monodisperse PMMA seed particles are first formed in the dispersed aqueous phase of the first W/O slug flow. Subsequently, removal of the oil phase from the slug flow is achieved through a porous hydrophobic tubing, resulting in a single flow of the aqueous phase containing the seed particles. The aqueous phase is then mixed with an oil phase containing St monomer to form the second W/O slug flow. Finally, monodisperse PMMA/PS composite particles are obtained by a seeded emulsion polymerization of St using the second W/O slug flow. We compared the reaction performance between the slug flow and the batch processes in terms of particle diameter, monomer conversion, particle size distribution, and the number of particles in the system. We found that internal circulation flow within the slugs can enhance mass transfer efficiency between them during polymerization, which results in monodisperse PMMA/PS composite particles with a large particle diameter and a high monomer conversion in a short reaction time, compared to those prepared using the batch process. We believe that this sequential microflow process can be a versatile strategy to continuously produce monodisperse composite particles or core-shell particles in a short reaction time.
Collapse
|
4
|
Li M, Zhang Y, Zhang J, Peng M, Yan L, Tang Z, Wu Q. Continuous Gas–Liquid–Solid Slug Flow for Sustainable Heterogeneously Catalyzed PET-RAFT Polymerization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minglei Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
| | - Yaheng Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Min Peng
- Analytical Instrumentation
Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| | - Liuming Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| | - Qing Wu
- Department of Science and Technology Development, China National Offshore Oil Corporation, Beijing, 100010, People’s Republic of China
| |
Collapse
|
5
|
Corrigan N, Trujillo FJ, Xu J, Moad G, Hawker CJ, Boyer C. Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Kandelhard F, Schuldt K, Schymura J, Georgopanos P, Abetz V. Model‐Assisted Optimization of RAFT Polymerization in Micro‐Scale Reactors—A Fast Screening Approach. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202000058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Felix Kandelhard
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Karina Schuldt
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Juliane Schymura
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Prokopios Georgopanos
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Volker Abetz
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
- Institute of Physical Chemistry University of Hamburg Martin‐Luther‐King‐Platz 6 Hamburg 20146 Germany
| |
Collapse
|
7
|
Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2529-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Daro N, Vaudel T, Afindouli L, Marre S, Aymonier C, Chastanet G. One-Step Synthesis of Spin Crossover Nanoparticles Using Flow Chemistry and Supercritical CO 2. Chemistry 2020; 26:16286-16290. [PMID: 32648612 DOI: 10.1002/chem.202002322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/09/2022]
Abstract
Switchable materials are increasingly considered for implementation in devices or multifunctional composites leading to a strong need in terms of reliable synthetic productions of well-defined objects. Here, an innovative and robust template-free continuous process was developed to synthesize nanoparticles of a switchable coordination polymer, including the use of supercritical CO2 , aiming at both quenching the particle growth and drying the powder. This all-in-one process offers a 12-fold size reduction in a few minutes while maintaining the switching properties of the selected spin crossover coordination polymer.
Collapse
Affiliation(s)
- Nathalie Daro
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Tony Vaudel
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Luc Afindouli
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Samuel Marre
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Cyril Aymonier
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | | |
Collapse
|
9
|
Glier TE, Vakili M, Trebbin M. Microfluidic synthesis of thermo-responsive block copolymer nano-objects via RAFT polymerization. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02290-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101256] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Zhao J, Li B, Bu Z, Fan H. Ring‐Opening Polymerization of Propylene Oxide by Double Metal Complex in Micro‐Reactor. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.201900048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Bo‐Geng Li
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Zhi‐Yang Bu
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Hong Fan
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
12
|
Reis MH, Leibfarth FA, Pitet LM. Polymerizations in Continuous Flow: Recent Advances in the Synthesis of Diverse Polymeric Materials. ACS Macro Lett 2020; 9:123-133. [PMID: 35638663 DOI: 10.1021/acsmacrolett.9b00933] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The number of reports using continuous flow technology in tubular reactors to perform precision polymerizations has grown enormously in recent years. Flow polymerizations allow highly efficient preparation of polymers exhibiting well-defined molecular characteristics, and has been applied to a slew of monomers and various polymerization mechanisms, including anionic, cationic, radical, and ring-opening. Polymerization conducted in continuous flow offers several distinct advantages, including improved efficiency, reproducibility, and enhanced safety for exothermic polymerizations using highly toxic components, high pressures, and high temperatures. The further development of this technology is thus of relevance for many industrial polymerization processes. While much progress has been demonstrated in recent years, opportunities remain for increasing the compositional and architectural complexity of polymeric materials synthesized in a continuous fashion. Extending the reactor processing principles that have heretofore been focused on optimizing homopolymerization to include multisegment block copolymers, particularly from monomers that propagate via incompatible mechanisms, represents a major challenge and coveted target for continuous flow polymerization. Likewise, the spatial and temporal control of reactivity afforded by flow chemistry has and will continue to enable the production of complex polymeric architectures. This Viewpoint offers a brief background of continuous flow polymerization focused primarily on tubular (micro)reactors and includes selected examples that are relevant to these specific developments.
Collapse
Affiliation(s)
- Marcus H. Reis
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Louis M. Pitet
- Advanced Polymer Functionalization Group, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
13
|
Judzewitsch PR, Corrigan N, Trujillo F, Xu J, Moad G, Hawker CJ, Wong EHH, Boyer C. High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02207] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Francisco Trujillo
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Graeme Moad
- Manufacturing, CSIRO, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Rizkin BA, Hartman RL. Activation of homogenous polyolefin catalysis with a machine-assisted reactor laboratory-in-a-box (μAIR-LAB). REACT CHEM ENG 2020. [DOI: 10.1039/d0re00139b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Catalysis discovery is typically limited to specialized labs – this work demonstrates an Artificially Intelligent Microreactor Lab in a Box applied to investigate the chemistry of different co-catalysts for zirconocene-catalyzed olefin polymerization.
Collapse
Affiliation(s)
- Benjamin A. Rizkin
- New York University
- Department of Chemical and Biomolecular Engineering
- Brooklyn NY
- USA
| | - Ryan L. Hartman
- New York University
- Department of Chemical and Biomolecular Engineering
- Brooklyn NY
- USA
| |
Collapse
|
15
|
Parkinson S, Knox ST, Bourne RA, Warren NJ. Rapid production of block copolymer nano-objects via continuous-flow ultrafast RAFT dispersion polymerisation. Polym Chem 2020. [DOI: 10.1039/d0py00276c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continuous-flow reactors are exploited for conducting ultrafast RAFT dispersion polymerisation for the preparation of diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Sam Parkinson
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Richard A. Bourne
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
16
|
Van De Walle M, Petit C, Blinco JP, Barner-Kowollik C. Visible-light reversible photopolymerisation: insights via online photoflow – electrospray ionisation – mass spectrometry. Polym Chem 2020. [DOI: 10.1039/d0py01119c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we introduce a scalable photopolyaddition polymerisations using the pyrene-chalcone [2+2]-cycloaddition and monitor the photodepolymerisation process via an online photoflow – electrospray ionisation mass spectrometry setup.
Collapse
Affiliation(s)
- Matthias Van De Walle
- Centre for Materials Science
- Centre for a Waste Free World
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
| | - Charlotte Petit
- Centre for Materials Science
- Centre for a Waste Free World
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
| | - James P. Blinco
- Centre for Materials Science
- Centre for a Waste Free World
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Centre for a Waste Free World
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
| |
Collapse
|
17
|
Knox ST, Warren NJ. Enabling technologies in polymer synthesis: accessing a new design space for advanced polymer materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00474b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses how developments in laboratory technologies can push the boundaries of what is achievable using existing polymer synthesis techniques.
Collapse
Affiliation(s)
- Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
18
|
Zhou Y, Gu Y, Jiang K, Chen M. Droplet-Flow Photopolymerization Aided by Computer: Overcoming the Challenges of Viscosity and Facilitating the Generation of Copolymer Libraries. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00846] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Kunming Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Lin B, Hedrick JL, Park NH, Waymouth RM. Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. J Am Chem Soc 2019; 141:8921-8927. [DOI: 10.1021/jacs.9b02450] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Binhong Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - James L. Hedrick
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H. Park
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Reis MH, Varner TP, Leibfarth FA. The Influence of Residence Time Distribution on Continuous-Flow Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00454] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marcus H. Reis
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P. Varner
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Song J, Zhang S, Wang K, Wang Y. Synthesis of million molecular weight polyacrylamide with droplet flow microreactors. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Rubens M, Vrijsen JH, Laun J, Junkers T. Precise Polymer Synthesis by Autonomous Self‐Optimizing Flow Reactors. Angew Chem Int Ed Engl 2019; 58:3183-3187. [DOI: 10.1002/anie.201810384] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Maarten Rubens
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| | | | - Joachim Laun
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Tanja Junkers
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| |
Collapse
|
23
|
Affiliation(s)
- Jian Deng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
24
|
Parkinson S, Hondow NS, Conteh JS, Bourne RA, Warren NJ. All-aqueous continuous-flow RAFT dispersion polymerisation for efficient preparation of diblock copolymer spheres, worms and vesicles. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00211h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A continuous-flow platform enables rapid kinetic profiling and accelerated production of block copolymer nano-objects via RAFT aqueous dispersion polymerization.
Collapse
Affiliation(s)
- Sam Parkinson
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Nicole S. Hondow
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - John S. Conteh
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Richard A. Bourne
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
- Institute of Process Research and Development
| | | |
Collapse
|
25
|
Marathianos A, Liarou E, Anastasaki A, Whitfield R, Laurel M, Wemyss AM, Haddleton DM. Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polym Chem 2019. [DOI: 10.1039/c9py00945k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photo-induced Cu-RDRP of acrylates in a continuous flow reactor without the need for deoxygenation or externally added reagents.
Collapse
Affiliation(s)
| | - Evelina Liarou
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | | | | - Matthew Laurel
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | - Alan M. Wemyss
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | |
Collapse
|
26
|
Subnaik SI, Hobbs CE. Flow-facilitated ring opening metathesis polymerization (ROMP) and post-polymerization modification reactions. Polym Chem 2019. [DOI: 10.1039/c9py00822e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Continuous flow facilitates ROMP reactions to prepare homopolymers and block copolymers and allows for in-line post-polymerization click modifications.
Collapse
|
27
|
Galaverna R, Fernandes LP, Browne DL, Pastre JC. Continuous flow processing as a tool for the generation of terpene-derived monomer libraries. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Diels–Alder reaction employing terpenes for rapid synthesis of monomer libraries under flow conditions is presented.
Collapse
Affiliation(s)
- Renan Galaverna
- Institute of Chemistry
- University of Campinas – UNICAMP
- Campinas
- Brazil
| | | | | | - Julio C. Pastre
- Institute of Chemistry
- University of Campinas – UNICAMP
- Campinas
- Brazil
| |
Collapse
|
28
|
Corrigan N, Zhernakov L, Hashim MH, Xu J, Boyer C. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00014c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A slug flow process has been utilised in conjunction with metal-free photopolymerisation to produce well-defined polymers with outstanding consistency.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Leonid Zhernakov
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Muhammad Hazim Hashim
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| |
Collapse
|
29
|
Shirali Zadeh N, Cooze MJ, Barr NR, Hutchinson RA. An efficient process for the Cu(0)-mediated synthesis and subsequent chain extension of poly(methyl acrylate) macroinitiator. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00224c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A process combining a continuous tubular and a semi-batch reactor is established as an efficient method for the synthesis of block copolymers.
Collapse
Affiliation(s)
| | - Morgan J. Cooze
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| | - Nathaniel R. Barr
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| |
Collapse
|
30
|
Vishwakarma NK, Hwang YH, Mishra AK, Kim JK, Kim DP. A platform for accelerated continuous-flow radical polymerization of acrylates and styrene with copper-wire threads. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00186g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Accelerated Cu(0)-mediated homo-/block (co)polymerization of the vinyl monomers is conducted via continuous-flow process with a copper metal-wire catalyst threaded through perfluoroalkoxy alkane (PFA) tube.
Collapse
Affiliation(s)
- Niraj K. Vishwakarma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Avnish Kumar Mishra
- Center for Smart Block Copolymers
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Jin Kon Kim
- Center for Smart Block Copolymers
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| |
Collapse
|
31
|
Rubens M, Vrijsen JH, Laun J, Junkers T. Precise Polymer Synthesis by Autonomous Self‐Optimizing Flow Reactors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maarten Rubens
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| | | | - Joachim Laun
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Tanja Junkers
- Hasselt University Martelarenlaan 42 3500 Hasselt Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk, Building 23 Clayton Vic 3800 Australia
| |
Collapse
|
32
|
Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Top Curr Chem (Cham) 2018; 376:44. [DOI: 10.1007/s41061-018-0224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|
33
|
Buss BL, Miyake GM. Photoinduced Controlled Radical Polymerizations Performed in Flow: Methods, Products, and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3931-3942. [PMID: 30559577 PMCID: PMC6293981 DOI: 10.1021/acs.chemmater.8b01359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoinduced controlled radical polymerizations (CRPs) have provided a variety of approaches for the synthesis of polymers possessing targeted structures, compositions, and functionalities with the added capability for spatial and temporal control, presenting the potential for new materials development. However, the scalability and reliability of these systems can be limited as a consequence of dependence on uniform irradiation of the reaction to produce well-defined products. In this perspective, we highlight the utility and promise of photo-CRP approaches through an overview of the adaptation of these methodologies to photo-flow reactor systems. Special emphasis is placed on the current state-of-the-art in polymerization scalability, reactor design, and polymer scope.
Collapse
Affiliation(s)
- Bonnie L. Buss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| |
Collapse
|
34
|
Yeow J, Chapman R, Gormley AJ, Boyer C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem Soc Rev 2018; 47:4357-4387. [PMID: 29718038 PMCID: PMC9857479 DOI: 10.1039/c7cs00587c] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The requirement for deoxygenation in controlled/living radical polymerisation (CLRP) places significant limitations on its widespread implementation by necessitating the use of large reaction volumes, sealed reaction vessels as well as requiring access to specialised equipment such as a glove box and/or inert gas source. As a result, in recent years there has been intense interest in developing strategies for overcoming the effects of oxygen inhibition in CLRP and therefore remove the necessity for deoxygenation. In this review, we highlight several strategies for achieving oxygen tolerant CLRP including: "polymerising through" oxygen, enzyme mediated deoxygenation and the continuous regeneration of a redox-active catalyst. In order to provide further clarity to the field, we also establish some basic parameters for evaluating the degree of "oxygen tolerance" that can be achieved using a given oxygen scrubbing strategy. Finally, we propose some applications that could most benefit from the implementation of oxygen tolerant CLRP and provide a perspective on the future direction of this field.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
35
|
Phommalysack-Lovan J, Chu Y, Boyer C, Xu J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem Commun (Camb) 2018; 54:6591-6606. [DOI: 10.1039/c8cc02783h] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) process has opened up a new way of precision polymer manufacturing to satisfy the concept of green chemistry.
Collapse
Affiliation(s)
- Jamie Phommalysack-Lovan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
36
|
Song Y, Shang M, Li G, Luo Z, Su Y. Influence of mixing performance on polymerization of acrylamide in capillary microreactors. AIChE J 2017. [DOI: 10.1002/aic.16046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Song
- Dept. of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai, 200240 P.R. China
| | - Minjing Shang
- Dept. of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai, 200240 P.R. China
| | - Guangxiao Li
- Dept. of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai, 200240 P.R. China
| | - Zheng‐Hong Luo
- Dept. of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai, 200240 P.R. China
| | - Yuanhai Su
- Dept. of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai, 200240 P.R. China
| |
Collapse
|
37
|
Corrigan N, Almasri A, Taillades W, Xu J, Boyer C. Controlling Molecular Weight Distributions through Photoinduced Flow Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01890] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Abdulrahman Almasri
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Werner Taillades
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Affiliation(s)
- Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
39
|
Gardiner J, Martinez-Botella I, Kohl TM, Krstina J, Moad G, Tyrell JH, Coote ML, Tsanaktsidis J. 4-Halogeno-3,5-dimethyl-1H-pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. POLYM INT 2017. [DOI: 10.1002/pi.5423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Graeme Moad
- CSIRO Manufacturing; Clayton Victoria Australia
| | - Jason H Tyrell
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry; Australian National University; Canberra Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry; Australian National University; Canberra Australia
| | | |
Collapse
|
40
|
Xiang L, Wang WJ, Li BG, Zhu S. Tailoring Polymer Molecular Weight Distribution and Multimodality in RAFT Polymerization Using Tube Reactor with Recycle. MACROMOL REACT ENG 2017. [DOI: 10.1002/mren.201700023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liang Xiang
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 P. R. China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 P. R. China
- Key Lab of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 P. R. China
| | - Shiping Zhu
- Department of Chemical Engineering; McMaster University; Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|
41
|
Ye P, Cao PF, Su Z, Advincula R. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry. POLYM INT 2017. [DOI: 10.1002/pi.5374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piaoran Ye
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory; Oak Ridge USA
| | - Zhe Su
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| | - Rigoberto Advincula
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| |
Collapse
|
42
|
Ramsey BL, Pearson RM, Beck LR, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow. Macromolecules 2017; 50:2668-2674. [PMID: 29051672 PMCID: PMC5642931 DOI: 10.1021/acs.macromol.6b02791] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) has emerged as a metal-free variant of historically transition-metal reliant atom transfer radical polymerization. Strongly reducing organic photoredox catalysts have proven capable of mediating O-ATRP. To date, operation of photoinduced O-ATRP has been demonstrated in batch reactions. However, continuous flow approaches can provide efficient irradiation reaction conditions and thus enable increased polymerization performance. Herein, the adaptation of O-ATRP to a continuous flow approach has been performed with multiple visible-light absorbing photoredox catalysts. Using continuous flow conditions, improved polymerization results were achieved, consisting of narrow molecular weight distributions as low as 1.05 and quantitative initiator efficiencies. This system demonstrated success with 0.01% photocatalyst loadings and a diverse methacrylate monomer scope. Additionally, successful chain-extension polymerizations using 0.01 mol % photocatalyst loadings reveal continuous flow O-ATRP to be a robust and versatile method of polymerization.
Collapse
Affiliation(s)
- Bonnie L. Ramsey
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan M. Pearson
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Logan R. Beck
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Garret M. Miyake
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
43
|
Debuigne A, Jérôme C, Detrembleur C. Organometallic-mediated radical polymerization of ‘less activated monomers’: Fundamentals, challenges and opportunities. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Saubern S, Nguyen X, Nguyen V, Gardiner J, Tsanaktsidis J, Chiefari J. Preparation of Forced Gradient Copolymers Using Tube-in-Tube Continuous Flow Reactors. MACROMOL REACT ENG 2017. [DOI: 10.1002/mren.201600065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Saubern
- CSIRO Manufacturing; Bag 10 Clayton VIC 3169 Australia
| | - Xuan Nguyen
- CSIRO Manufacturing; Bag 10 Clayton VIC 3169 Australia
| | - Van Nguyen
- CSIRO Manufacturing; Bag 10 Clayton VIC 3169 Australia
| | | | | | - John Chiefari
- CSIRO Manufacturing; Bag 10 Clayton VIC 3169 Australia
| |
Collapse
|
45
|
Hornung CH, Álvarez-Diéguez MÁ, Kohl TM, Tsanaktsidis J. Diels-Alder reactions of myrcene using intensified continuous-flow reactors. Beilstein J Org Chem 2017; 13:120-126. [PMID: 28228853 PMCID: PMC5301964 DOI: 10.3762/bjoc.13.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/02/2017] [Indexed: 11/23/2022] Open
Abstract
This work describes the Diels-Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels-Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.
Collapse
Affiliation(s)
| | | | - Thomas M Kohl
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
46
|
Baeten E, Haven JJ, Junkers T. RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade. Polym Chem 2017. [DOI: 10.1039/c7py00585g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined multiblock copolymers were synthesized via reversible addition-fragmentation chain transfer radical polymerization in a fully continuous multireactor cascade.
Collapse
Affiliation(s)
- Evelien Baeten
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Joris J. Haven
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| |
Collapse
|
47
|
Kuroki A, Martinez-Botella I, Hornung CH, Martin L, Williams EGL, Locock KES, Hartlieb M, Perrier S. Looped flow RAFT polymerization for multiblock copolymer synthesis. Polym Chem 2017. [DOI: 10.1039/c7py00630f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flexible, robust and time-efficient scale-up of multiblock copolymers with low dispersity and high livingness.
Collapse
Affiliation(s)
- Agnès Kuroki
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Liam Martin
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
48
|
Bizet B, Hornung CH, Kohl TM, Tsanaktsidis J. Synthesis of Imines and Amines from Furfurals Using Continuous Flow Processing. Aust J Chem 2017. [DOI: 10.1071/ch17036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple procedure for the condensation of the bio-derived furfurals, 5-(methyl)furfural (MF) and 5-(chloromethyl)furfural (CMF), with primary amines is described herein. The experiments were conducted in both batch and flow conditions, with reaction times as short as 60 s. Moderately high temperatures were demonstrated to be suitable for the condensation reaction of MF in a few minutes whereas milder conditions and longer reaction times were necessary for CMF. Under these conditions the amine did not react with the methyl-chlorine group, leaving a very reactive site after condensation.
Collapse
|
49
|
Morsbach J, Müller AHE, Berger-Nicoletti E, Frey H. Living Polymer Chains with Predictable Molecular Weight and Dispersity via Carbanionic Polymerization in Continuous Flow: Mixing Rate as a Key Parameter. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00975] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jan Morsbach
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Axel H. E. Müller
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Elena Berger-Nicoletti
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
50
|
D’hooge DR, Van Steenberge PH, Reyniers MF, Marin GB. The strength of multi-scale modeling to unveil the complexity of radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.04.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|