1
|
Brandão P, Pineiro M, M.V.D. Pinho e Melo T. Flow Chemistry: Sequential Flow Processes for the Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Martina K, Cravotto G, Varma RS. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. J Org Chem 2021; 86:13857-13872. [PMID: 34125541 PMCID: PMC8524417 DOI: 10.1021/acs.joc.1c00865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Microwave-assisted organic synthesis has been widely studied and deliberated, opening up some controversial issues as well. Nowadays, microwave chemistry is a mature technology that has been well demonstrated in many cases with numerous advantages in terms of the reaction rate and yield. The strategies toward scaling up find an ally in continuous-flow reactor technology comparing dielectric and conductive heating.
Collapse
Affiliation(s)
- Katia Martina
- Dipartimento
di Scienza e Tecnologia del Farmaco and Centre for Nanostructured
Interfaces and Surfaces (NIS), University of Turin, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Dipartimento
di Scienza e Tecnologia del Farmaco and Centre for Nanostructured
Interfaces and Surfaces (NIS), University of Turin, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Guerrero‐Corella A, Valle‐Amores MA, Fraile A, Alemán J. Enantioselective Organocatalyzed
aza
‐Michael Addition Reaction of 2‐Hydroxybenzophenone Imines to Nitroolefins under Batch and Flow Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Miguel A. Valle‐Amores
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alberto Fraile
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
5
|
Colella M, Degennaro L, Luisi R. Continuous Flow Synthesis of Heterocycles: A Recent Update on the Flow Synthesis of Indoles. Molecules 2020; 25:molecules25143242. [PMID: 32708643 PMCID: PMC7397031 DOI: 10.3390/molecules25143242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Indole derivatives are among the most useful and interesting heterocycles employed in drug discovery and medicinal chemistry. In addition, flow chemistry and flow technology are changing the synthetic paradigm in the field of modern synthesis. In this review, the role of flow technology in the preparation of indole derivatives is showcased. Selected examples have been described with the aim to provide readers with an overview on the tactics and technologies used for targeting indole scaffolds.
Collapse
|
6
|
Alfano AI, Zampella A, Novellino E, Brindisi M, Lange H. Harnessing interrupted Fischer in continuous flow: sustainable synthesis of (spiro)indolenine and (spiro)indoline privileged scaffolds. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00329h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3,3-Disubstituted indolenines are obtained via a green and sustainable flow chemistry protocol for interrupted Fischer indolisation reactions.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Angela Zampella
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Ettore Novellino
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Margherita Brindisi
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| | - Heiko Lange
- SPOTS-LAB – Sustainable Pharmaceutical and Organic Technology and Synthesis Laboratory
- Department of Pharmacy
- University of Naples ‘Federico II’
- 80131 Naples
- Italy
| |
Collapse
|
7
|
Brandão P, Pineiro M, Pinho e Melo TMVD. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
- Centro de Química de Évora; Institute for Research and Advanced Studies; University of Évora; 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
| | | |
Collapse
|
8
|
Crifar C, Dücker FL, Nguyen Thanh S, Kairouz V, Lubell WD. Heumann Indole Flow Chemistry Process. J Org Chem 2019; 84:10929-10937. [DOI: 10.1021/acs.joc.9b01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cynthia Crifar
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Fenja L. Dücker
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Sacha Nguyen Thanh
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Vanessa Kairouz
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
Duong ATH, Simmons BJ, Alam MP, Campagna J, Garg NK, John V. Synthesis of Fused Indolines by Interrupted Fischer Indolization in a Microfluidic Reactor. Tetrahedron Lett 2019; 60:322-326. [PMID: 30631216 PMCID: PMC6322698 DOI: 10.1016/j.tetlet.2018.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner.
Collapse
Affiliation(s)
- Alexander Tuan-Huy Duong
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Bryan J Simmons
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Mohammad Parvez Alam
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Jesus Campagna
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Varghese John
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
10
|
Palmieri A, Petrini M. Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Nat Prod Rep 2019; 36:490-530. [DOI: 10.1039/c8np00032h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report presents some fundamental aspects related to the natural occurrence and bioactivity of tryptophol as well as the synthesis of tryptophols and their utilization for the preparation of naturally occurring alkaloid metabolites embedding the indole system.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| |
Collapse
|
11
|
Dubhashe YR, Sawant VM, Gaikar VG. Process Intensification of Continuous Flow Synthesis of Tryptophol. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yogeshwar R. Dubhashe
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Vishal M. Sawant
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Vilas G. Gaikar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
12
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
13
|
Baumann M, Baxendale IR. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J Org Chem 2015; 11:1194-219. [PMID: 26425178 PMCID: PMC4578405 DOI: 10.3762/bjoc.11.134] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022] Open
Abstract
The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| |
Collapse
|
14
|
Baraldi PT, Noël T, Wang Q, Hessel V. The accelerated preparation of 1,4-dihydropyridines using microflow reactors. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Glasnov TN. Highlights from the Flow Chemistry Literature 2013 (Part 1). J Flow Chem 2013. [DOI: 10.1556/jfc-d-13-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|