1
|
Sagmeister P, Melnizky L, Williams JD, Kappe CO. Simultaneous reaction- and analytical model building using dynamic flow experiments to accelerate process development. Chem Sci 2024; 15:12523-12533. [PMID: 39118626 PMCID: PMC11304546 DOI: 10.1039/d4sc01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
In modern pharmaceutical research, the demand for expeditious development of synthetic routes to active pharmaceutical ingredients (APIs) has led to a paradigm shift towards data-rich process development. Conventional methodologies encompass prolonged timelines for the development of both a reaction model and analytical models. The development of both methods are often separated into different departments and can require an iterative optimization process. Addressing this issue, we introduce an innovative dual modeling approach, combining the development of a Process Analytical Technology (PAT) strategy with reaction optimization. This integrated approach is exemplified in diverse amidation reactions and the synthesis of the API benznidazole. The platform, characterized by a high degree of automation and minimal operator involvement, achieves PAT calibration through a "standard addition" approach. Dynamic experiments are executed to screen a broad process space and gather data for fitting kinetic parameters. Employing an open-source software program facilitates rapid kinetic parameter fitting and additional in silico optimization within minutes. This highly automated workflow not only expedites the understanding and optimization of chemical processes, but also holds significant promise for time and resource savings within the pharmaceutical industry.
Collapse
Affiliation(s)
- Peter Sagmeister
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Lukas Melnizky
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Jason D Williams
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
2
|
Sen M, Arguelles AJ, Stamatis SD, García-Muñoz S, Kolis S. An optimization-based model discrimination framework for selecting an appropriate reaction kinetic model structure during early phase pharmaceutical process development. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00222h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A model discrimination workflow to develop fit for purpose kinetic models of new pharmaceutical compounds in early stages of drug development involving complex reaction networks with limited prior information and provision to run new experiments.
Collapse
Affiliation(s)
- Maitraye Sen
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street, Indianapolis, Indiana 46221, USA
| | - Alonso J. Arguelles
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street, Indianapolis, Indiana 46221, USA
| | - Stephen D. Stamatis
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street, Indianapolis, Indiana 46221, USA
| | - Salvador García-Muñoz
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street, Indianapolis, Indiana 46221, USA
| | - Stanley Kolis
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street, Indianapolis, Indiana 46221, USA
| |
Collapse
|
3
|
Haas CP, Biesenroth S, Buckenmaier S, van de Goor T, Tallarek U. Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00066c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Competing homo- and crossdimerization reactions between coumarin and 1-methyl-2-quinolinone are investigated by transient continuous-flow experiments combined with online HPLC, enabling the generation and acquisition of large reaction data sets.
Collapse
Affiliation(s)
- Christian P. Haas
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Simon Biesenroth
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | | | - Tom van de Goor
- Agilent Technologies R&D and Marketing GmbH & Co. KG
- 76337 Waldbronn
- Germany
| | - Ulrich Tallarek
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| |
Collapse
|
4
|
Ładosz A, Kuhnle C, Jensen KF. Characterization of reaction enthalpy and kinetics in a microscale flow platform. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00304b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report an isothermal flow calorimeter for characterization of reaction enthalpy and kinetics.
Collapse
Affiliation(s)
- Agnieszka Ładosz
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Christina Kuhnle
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
5
|
Waldron C, Pankajakshan A, Quaglio M, Cao E, Galvanin F, Gavriilidis A. Model-based design of transient flow experiments for the identification of kinetic parameters. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00342h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and precise estimation of kinetic parameters is facilitated by transient flow experiments designed using model-based design of experiments.
Collapse
Affiliation(s)
- Conor Waldron
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | - Marco Quaglio
- Dept of Chemical Engineering
- University College London
- London
- UK
| | - Enhong Cao
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | | |
Collapse
|
6
|
Waldron C, Pankajakshan A, Quaglio M, Cao E, Galvanin F, Gavriilidis A. Closed-Loop Model-Based Design of Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Conor Waldron
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Arun Pankajakshan
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Marco Quaglio
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Enhong Cao
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Federico Galvanin
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
7
|
Wang K, Han L, Mustakis J, Li B, Magano J, Damon DB, Dion A, Maloney MT, Post R, Li R. Kinetic and Data-Driven Reaction Analysis for Pharmaceutical Process Development. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Wang
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lu Han
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jason Mustakis
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bryan Li
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Javier Magano
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David B. Damon
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amelie Dion
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark T. Maloney
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ronald Post
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ruizhi Li
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
8
|
Waldron C, Pankajakshan A, Quaglio M, Cao E, Galvanin F, Gavriilidis A. An autonomous microreactor platform for the rapid identification of kinetic models. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00345a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rapid estimation of kinetic parameters with high precision is facilitated by automation combined with online Model-Based Design of Experiments.
Collapse
Affiliation(s)
- Conor Waldron
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | - Marco Quaglio
- Dept of Chemical Engineering
- University College London
- London
- UK
| | - Enhong Cao
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | | |
Collapse
|
9
|
Clayton AD, Manson JA, Taylor CJ, Chamberlain TW, Taylor BA, Clemens G, Bourne RA. Algorithms for the self-optimisation of chemical reactions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00209j] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-optimising chemical systems have experienced a growing momentum in recent years. Herein, we review algorithms used for the self-optimisation of chemical reactions in an accessible way for the general chemist.
Collapse
Affiliation(s)
- Adam D. Clayton
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Jamie A. Manson
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Connor J. Taylor
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | | | | | - Richard A. Bourne
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| |
Collapse
|
10
|
Kroll P, Hofer A, Ulonska S, Kager J, Herwig C. Model-Based Methods in the Biopharmaceutical Process Lifecycle. Pharm Res 2017; 34:2596-2613. [PMID: 29168076 PMCID: PMC5736780 DOI: 10.1007/s11095-017-2308-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Model-based methods are increasingly used in all areas of biopharmaceutical process technology. They can be applied in the field of experimental design, process characterization, process design, monitoring and control. Benefits of these methods are lower experimental effort, process transparency, clear rationality behind decisions and increased process robustness. The possibility of applying methods adopted from different scientific domains accelerates this trend further. In addition, model-based methods can help to implement regulatory requirements as suggested by recent Quality by Design and validation initiatives. The aim of this review is to give an overview of the state of the art of model-based methods, their applications, further challenges and possible solutions in the biopharmaceutical process life cycle. Today, despite these advantages, the potential of model-based methods is still not fully exhausted in bioprocess technology. This is due to a lack of (i) acceptance of the users, (ii) user-friendly tools provided by existing methods, (iii) implementation in existing process control systems and (iv) clear workflows to set up specific process models. We propose that model-based methods be applied throughout the lifecycle of a biopharmaceutical process, starting with the set-up of a process model, which is used for monitoring and control of process parameters, and ending with continuous and iterative process improvement via data mining techniques.
Collapse
Affiliation(s)
- Paul Kroll
- Research Area Biochemical Engineering, Institute of Chemical Environmental and Biological Engineering, Vienna University of Technology, Gumpendorfer Straße 1a - 166/4, A-1060, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Vienna, Austria
| | - Alexandra Hofer
- Research Area Biochemical Engineering, Institute of Chemical Environmental and Biological Engineering, Vienna University of Technology, Gumpendorfer Straße 1a - 166/4, A-1060, Vienna, Austria
| | - Sophia Ulonska
- Research Area Biochemical Engineering, Institute of Chemical Environmental and Biological Engineering, Vienna University of Technology, Gumpendorfer Straße 1a - 166/4, A-1060, Vienna, Austria
| | - Julian Kager
- Research Area Biochemical Engineering, Institute of Chemical Environmental and Biological Engineering, Vienna University of Technology, Gumpendorfer Straße 1a - 166/4, A-1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical Environmental and Biological Engineering, Vienna University of Technology, Gumpendorfer Straße 1a - 166/4, A-1060, Vienna, Austria.
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Vienna, Austria.
| |
Collapse
|
11
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
12
|
Hone CA, Holmes N, Akien GR, Bourne RA, Muller FL. Rapid multistep kinetic model generation from transient flow data. REACT CHEM ENG 2017; 2:103-108. [PMID: 28580177 PMCID: PMC5436494 DOI: 10.1039/c6re00109b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023]
Abstract
SNAr reaction profiles were generated using an automated reactor, collected in less than 3 hours, and allowed accurate estimation of kinetic parameters.
Today, the generation of kinetic models is still seen as a resource intensive and specialised activity. We report an efficient method of generating reaction profiles from transient flows using a state-of-the-art continuous-flow platform. Experimental data for multistep aromatic nucleophilic substitution reactions are collected from an automated linear gradient flow ramp with online HPLC at the reactor outlet. Using this approach, we generated 16 profiles, at 3 different inlet concentrations and 4 temperatures, in less than 3 hours run time. The kinetic parameters, 4 rate constants and 4 activation energies were fitted with less than 4% uncertainty. We derived an expression for the error in the observed rate constants due to dispersion and showed that such error is 5% or lower. The large range of operational conditions prevented the need to isolate individual reaction steps. Our approach enables early identification of the sensitivity of product quality to parameter changes and early use of unit operation models to identify optimal process-equipment combinations in silico, greatly reducing scale up risks.
Collapse
Affiliation(s)
- Christopher A Hone
- Institute of Process Research and Development , School of Chemistry and School of Chemical and Process Engineering , University of Leeds , LS2 9JT , UK . ;
| | - Nicholas Holmes
- Institute of Process Research and Development , School of Chemistry and School of Chemical and Process Engineering , University of Leeds , LS2 9JT , UK . ;
| | - Geoffrey R Akien
- Institute of Process Research and Development , School of Chemistry and School of Chemical and Process Engineering , University of Leeds , LS2 9JT , UK . ; .,Department of Chemistry , Lancaster University , Lancaster , LA1 4YB , UK
| | - Richard A Bourne
- Institute of Process Research and Development , School of Chemistry and School of Chemical and Process Engineering , University of Leeds , LS2 9JT , UK . ;
| | - Frans L Muller
- Institute of Process Research and Development , School of Chemistry and School of Chemical and Process Engineering , University of Leeds , LS2 9JT , UK . ;
| |
Collapse
|
13
|
Abstract
Engineering characteristics of liquid–liquid microflow and its advantages in chemical reactions.
Collapse
Affiliation(s)
- Kai Wang
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Liantang Li
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Pei Xie
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Guangsheng Luo
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
14
|
A joint model-based experimental design approach for the identification of kinetic models in continuous flow laboratory reactors. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Barz T, López C. DC, Cruz Bournazou MN, Körkel S, Walter SF. Real-time adaptive input design for the determination of competitive adsorption isotherms in liquid chromatography. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Han L, Zhou Z, Bollas GM. Model‐based analysis of chemical‐looping combustion experiments. Part II: Optimal design of CH
4
‐NiO reduction experiments. AIChE J 2016. [DOI: 10.1002/aic.15242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lu Han
- Dept. of Chemical & Biomolecular EngineeringUniversity of Connecticut 191 Auditorium Road, Unit 3222Storrs CT06269‐3222
| | - Zhiquan Zhou
- Dept. of Chemical & Biomolecular EngineeringUniversity of Connecticut 191 Auditorium Road, Unit 3222Storrs CT06269‐3222
| | - George M. Bollas
- Dept. of Chemical & Biomolecular EngineeringUniversity of Connecticut 191 Auditorium Road, Unit 3222Storrs CT06269‐3222
| |
Collapse
|
17
|
Abstract
Biocatalysis is a growing area of synthetic and process chemistry with the ability to deliver not only improved processes for the synthesis of existing compounds, but also new routes to new compounds.
Collapse
Affiliation(s)
- R. H. Ringborg
- CAPEC-PROCESS Research Center
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - J. M. Woodley
- CAPEC-PROCESS Research Center
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| |
Collapse
|