1
|
Cruz G, García-Oliva C, Perona A, Hoyos P, Hernáiz MJ. Enhancing rhamnolipid production via immobilized Pseudomonas stutzeri lipase: A comparative study. Bioorg Chem 2024; 153:107855. [PMID: 39426338 DOI: 10.1016/j.bioorg.2024.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Rhamnolipids (RLs) are widely studied biosurfactants with significant industrial potential in cosmetics, pharmaceuticals, and bioremediation due to their excellent surface activity, emulsifying properties and bioactive characteristics. However, high production costs impede their mass production. This study investigates the immobilization of Pseudomonas stutzeri lipase (PSL) on various supports to enhance RL synthesis efficiency, focusing on yield and regioselectivity in the enzymatic synthesis of 4-O-lauroylrhamnose by the transesterification of rhamnose with vinyl laurate. Three immobilization methods were compared: covalent binding, adsorption on Celite, and adsorption on hydrophobic supports. The immobilization efficiency varied depending on the method used, with the lowest observed for adsorption on Celite (56 %), followed by covalent immobilization on Sepabeads (EC-EP/S 78 % and EC-EP/L 70 %), and the highest for adsorption on hydrophobic supports (83-97 %, with EC-OD being the best at 97 %). For the enzymatic synthesis of 4-O-lauroylrhamnose, covalent immobilization on Sepabeads™ EC-EP yielded low conversions due to restricted conformational freedom of the enzyme. Celite® 545 adsorption resulted in moderate conversion rates, limited by the electrostatic interactions restricting enzyme activity. The most promising results were obtained with hydrophobic supports, particularly Purolite® ECR8806F, achieving nearly complete conversion and maintaining high regioselectivity at the 4-position of rhamnose in both THF and the green solvent 2-methyltetrahydrofuran (2-MeTHF). The study highlights the critical role of support hydrophobicity and active surface area in the immobilized enzyme performance. PSL immobilized on Purolite® ECR8806F demonstrated significant potential for sustainable RLs production, showing excellent reusability, stability and productivity across multiple reaction cycles. This study presents a significant advancement in RLs production by optimizing PSL immobilization and reaction conditions, facilitating the way for more cost-effective and sustainable industrial applications.
Collapse
Affiliation(s)
- Guillermo Cruz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, E 28040 Madrid, Spain
| | - Cecilia García-Oliva
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, E 28040 Madrid, Spain
| | - Almudena Perona
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, E 28040 Madrid, Spain
| | - Pilar Hoyos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, E 28040 Madrid, Spain
| | - María J Hernáiz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, E 28040 Madrid, Spain.
| |
Collapse
|
2
|
Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas stutzeri. Int J Mol Sci 2022; 23:ijms23042239. [PMID: 35216354 PMCID: PMC8876684 DOI: 10.3390/ijms23042239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Rhamnolipids are becoming an important class of glycolipid biosurfactants. Herein, we describe for the first time the enzymatic synthesis of rhamnose fatty acid esters by the transesterification of rhamnose with fatty acid vinyl esters, using lipase from Pseudomonas stutzeri as a biocatalyst. The use of this lipase allows excellent catalytic activity in the synthesis of 4-O-acylrhamnose (99% conversion and full regioselectivity) after 3 h of reaction using tetrahydrofuran (THF) as the reaction media and an excess of vinyl laurate as the acyl donor. The role of reaction conditions, such as temperature, the substrates molar ratio, organic reaction medium and acyl donor chain-length, was studied. Optimum conditions were found using 35 °C, a molar ratio of 1:3 (rhamnose:acyldonor), solvents with a low logP value, and fatty acids with chain lengths from C4 to C18 as acyl donors. In hydrophilic solvents such as THF and acetone, conversions of up to 99–92% were achieved after 3 h of reaction. In a more sustainable solvent such as 2-methyl-THF (2-MeTHF), high conversions were also obtained (86%). Short and medium chain acyl donors (C4–C10) allowed maximum conversions after 3 h, and long chain acyl donors (C12–C18) required longer reactions (5 h) to get 99% conversions. Furthermore, scaled up reactions are feasible without losing catalytic action and regioselectivity. In order to explain enzyme regioselectivity and its ability to accommodate ester chains of different lengths, homology modelling, docking studies and molecular dynamic simulations were performed to explain the behaviour observed.
Collapse
|
3
|
Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@Zn 3(PO 4) 2 hybrid nanoflowers. Int J Biol Macromol 2022; 204:520-531. [PMID: 35167870 DOI: 10.1016/j.ijbiomac.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022]
Abstract
Organic-inorganic hybrid nanoflowers (HNFs) of laccase@Zn3(PO4)2 were fabricated through a facile, simple, and rapid one-step strategy. In this process, laccase was involved in nucleation and fast anisotropic growth reactions with Zn (II) and phosphate ions. The average pore size of the prepared HNFs was 54.5 nm, and its BET-specific surface area was 59.5 m2 g-1. In comparison with the free laccase, the entrapped enzyme activity in the constructed HNFs was 86.4%. In addition, the hybrid biocatalyst displayed a maximum rate of reaction (Vmax) of 1640.2 ± 3.6 μmol min-1 with respect to the native enzyme. The constructed HNFs maintained 45.1% and 60% of the original laccase activity after 12 successive reusability cycles and 30 days of storage at 4 °C, respectively. The as-obtained HNFs demonstrated a high bioremoval percentage of Direct blue-71 (94.1%) within a 10-h-treatment at 40 °C and 15 mg l-1 of the dye concentration. The pseudo-first order and second order were the best-fitted kinetic models for the dye removal using Zn3(PO4)2 nanoflakes and the fabricated HNFs, respectively. Besides, liquid chromatography-mass spectrometry (LC-MS) revealed biotransformation of the dye into less toxic metabolites as verified by testing on some bacterial strains.
Collapse
|
4
|
de Sousa Fonseca T, de Oliveira UMF, de Oliveira MDCF, de Lemos TLG, da Silva MR, Rios NS, Gonçalves LRB, de Mattos MC. Immobilization of Amano lipase AK from Pseudomonas fluorescens on different types of chitosan-containing supports: use in the kinetic resolution of rac-indanol. Bioprocess Biosyst Eng 2021; 44:785-792. [PMID: 33389170 DOI: 10.1007/s00449-020-02487-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Amano lipase AK from P. fluorescens was immobilized on different types of chitosan-containing supports. Chitosan lower molecular weight (2.5%), chitosan lower molecular weight/sodium alginate (2.5%/2.5%) and chitosan lower molecular weight/carrageenan (2.5%/2.5%) allowed the highest values of immobilization yields (IY) of 81, 81 and 83%, respectively. Best activity results were achieved using chitosan average molecular weight (5%) and chitosan lower molecular weight/sodium alginate (2.5%/2.5%) as support, with values of 1.40 and 1.30 UpNPB/ggel and with recovery activities of 45.75 and 35.6%, respectively. These derivatives were evaluated in the kinetic resolution of rac-indanol to obtain a key intermediate in the synthesis of a drug used in the treatment of Parkinson's disease. The most efficient derivatives in the kinetic resolution were lipase immobilized on chitosan average molecular weight (5.0%) and chitosan low molecular weight/sodium alginate, the latter leading to obtaining both (S)-indanol and (R)-indanyl acetate with > 99% ee and 50% conversion.
Collapse
Affiliation(s)
- Thiago de Sousa Fonseca
- Department of Organic and Inorganic Chemistry, Laboratory of Biotechnology and Organic Synthesis (LABS), Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-970, Brazil.,Federal Institute of Education, Science and Technology of Ceará, Campus de Crateús, Avenida Geraldo Barbosa Marques, 567, Crateús, CE, 63708-260, Brazil
| | - Ulisses Marcondes Freire de Oliveira
- Department of Organic and Inorganic Chemistry, Laboratory of Biotechnology and Organic Synthesis (LABS), Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Maria da Conceição Ferreira de Oliveira
- Department of Organic and Inorganic Chemistry, Laboratory of Biotechnology and Organic Synthesis (LABS), Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Telma Leda Gomes de Lemos
- Department of Organic and Inorganic Chemistry, Laboratory of Biotechnology and Organic Synthesis (LABS), Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-970, Brazil
| | | | - Nathalia Saraiva Rios
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-760, Brazil
| | | | - Marcos Carlos de Mattos
- Department of Organic and Inorganic Chemistry, Laboratory of Biotechnology and Organic Synthesis (LABS), Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, 60455-970, Brazil.
| |
Collapse
|
5
|
Liu T, Pei B, Lin J, Zhang G. Immobilization of β-1,3-xylanase on pitch-based hyper-crosslinked polymers loaded with Ni2+ for algal biomass manipulation. Enzyme Microb Technol 2020; 142:109674. [DOI: 10.1016/j.enzmictec.2020.109674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 01/11/2023]
|
6
|
Paggiola G, Derrien N, Moseley JD, Green A, Flitsch SL, Clark JH, McElroy CR, Hunt AJ. Application of bio-based solvents for biocatalysed synthesis of amides with Pseudomonas stutzeri lipase (PSL). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBio-based solvents were investigated for the biocatalysed amidation reactions of various ester-amine combinations by Pseudomonas stutzeri lipase (PSL). Reactions were undertaken in a range of green and potentially bio-based solvents including terpinolene, p-cymene, limonene, 2-methyl THF, ɣ-valerolactone, propylene carbonate, dimethyl isosorbide, glycerol triacetate and water. Solvent screenings demonstrated the importance and potential of using non-polar bio-based solvents for favouring aminolysis over hydrolysis; whilst substrate screenings highlighted the unfavourable impact of reactants bearing bulky para- or 4-substituents. Renewable terpene-based solvents (terpinolene, p-cymene, D-limonene) were demonstrated to be suitable bio-based media for PSL amidation reactions. Such solvents could provide a greener and more sustainable alternative to traditional petrochemical derived non-polar solvents. Importantly, once the enzyme (either PSL or CALB) binds with a bulky para-substituted substrate, only small reagents are able to access the active site. This therefore limits the possibility for aminolysis to take place, thereby promoting the hydrolysis. This mechanism of binding supports the widely accepted ‘Ping Pong – Bi Bi’ mechanism used to describe enzyme kinetics. The work highlights the need to further investigate enzyme activity in relation to para- or 4-substituted substrates. A priority in PSL chemistry remains a methodology to tackle the competing hydrolysis reaction.
Collapse
Affiliation(s)
- Giulia Paggiola
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Nolwenn Derrien
- CatSci Ltd, CBTC2 Capital Business Park, Wentloog, Cardiff, CF3 2PX, UK
| | | | - Anthony Green
- Manchester Institute of Biotechnology & School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology & School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - James H. Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Con Robert McElroy
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, North Yorkshire YO10 5DD, UK
| | - Andrew J. Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
7
|
Petrenz‐Beck A, Kühn J, Zuhse R, Ansorge‐Schumacher MB. Chemo‐Enzymatic Dynamic Kinetic Resolution of Symmetric and Non‐Symmetric α‐Hydroxy Ketones for Industrial Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201900740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annika Petrenz‐Beck
- Chair of Molecular BiotechnologyTechnische Universität Dresden 01062 Dresden Germany
| | - Jasmin Kühn
- Chiracon GmbH Im Biotechnologiepark 9 14943 Luckenwalde Germany
| | - Ralf Zuhse
- Chiracon GmbH Im Biotechnologiepark 9 14943 Luckenwalde Germany
| | | |
Collapse
|
8
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
9
|
Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. Efficient Resolution of cis-(±)-Dimethyl 1-Acetylpiperidine-2,3-dicarboxylate by Covalently Immobilized Mutant Candida antarctica Lipase B in Batch and Semicontinuous Modes. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiang-Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Mei Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
|