1
|
Tuck JR, Dunlap LE, Olson DE. Synthetic Strategies toward Lysergic Acid Diethylamide: Ergoline Synthesis via α-Arylation, Borrowing Hydrogen Alkylation, and C-H Insertion. J Org Chem 2023; 88:13712-13719. [PMID: 37697477 PMCID: PMC10591856 DOI: 10.1021/acs.joc.3c01363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Lysergic acid diethylamide (LSD), a semisynthetic ergoline alkaloid analogue and hallucinogen, is a potent psychoplastogen with promising therapeutic potential. While a variety of synthetic strategies for accessing ergoline alkaloids have emerged, the complexity of the tetracyclic ring system results in distinct challenges in preparing analogues with novel substitution patterns. Methods of modulating the hallucinogenic activity of LSD by functionalization at previously inaccessible positions are of continued interest, and efficient syntheses of the ergoline scaffold are integral toward this purpose. Here, we report novel C-C bond forming strategies for preparing the ergoline tetracyclic core, focusing on the relatively unexplored strategy of bridging the B- and D-ring systems last. Following cross-coupling to first join the A- and D-rings, we explored a variety of methods for establishing the C-ring, including intramolecular α-arylation, borrowing hydrogen alkylation, and rhodium-catalyzed C-H insertion. Our results led to a seven-step formal synthesis of LSD and the first methods for readily introducing substitution on the C-ring. These strategies are efficient for forming ergoline-like tetracyclic compounds and analogues, though they each face unique challenges associated with elaboration to ergoline natural products. Taken together, these studies provide important insights that will guide future synthetic strategies toward ergolines.
Collapse
Affiliation(s)
- Jeremy R. Tuck
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - Lee E. Dunlap
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
2
|
Najmi AA, Bischoff R, Permentier HP. N-Dealkylation of Amines. Molecules 2022; 27:molecules27103293. [PMID: 35630770 PMCID: PMC9146227 DOI: 10.3390/molecules27103293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023] Open
Abstract
N-dealkylation, the removal of an N-alkyl group from an amine, is an important chemical transformation which provides routes for the synthesis of a wide range of pharmaceuticals, agrochemicals, bulk and fine chemicals. N-dealkylation of amines is also an important in vivo metabolic pathway in the metabolism of xenobiotics. Identification and synthesis of drug metabolites such as N-dealkylated metabolites are necessary throughout all phases of drug development studies. In this review, different approaches for the N-dealkylation of amines including chemical, catalytic, electrochemical, photochemical and enzymatic methods will be discussed.
Collapse
|
3
|
Dagar N, Singh S, Roy SR. Copper Catalyzed‐TBHP/DTBP Promoted C(sp
2
)−H Bond Scission of Aldehydes: An Approach to Transform Aldehyde to Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neha Dagar
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Swati Singh
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sudipta Raha Roy
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
4
|
Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2021; 85:1-112. [DOI: 10.1016/bs.alkal.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhu F, Aisa HA, Zhang J, Hu T, Sun C, He Y, Xie Y, Shen J. Development of a Robust Process for the Preparation of High-Quality 4-Methylenepiperidine Hydrochloride. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fuqiang Zhu
- Key
Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Haji A. Aisa
- Key
Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, P. R. China
| | - Jian Zhang
- Topharman Shanghai
Co., Ltd., Building 1, No. 388 Jialilue
Road, Zhangjiang Hitech Park, Shanghai 201209, P. R. China
| | - Tianwen Hu
- Topharman Shanghai
Co., Ltd., Building 1, No. 388 Jialilue
Road, Zhangjiang Hitech Park, Shanghai 201209, P. R. China
| | - Changliang Sun
- Topharman Shanghai
Co., Ltd., Building 1, No. 388 Jialilue
Road, Zhangjiang Hitech Park, Shanghai 201209, P. R. China
| | - Yang He
- CAS
Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuanchao Xie
- CAS
Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jingshan Shen
- CAS
Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| |
Collapse
|
6
|
Yu C, Shoaib MA, Iqbal N, Kim JS, Ha HJ, Cho EJ. Selective Ring-Opening of N-Alkyl Pyrrolidines with Chloroformates to 4-Chlorobutyl Carbamates. J Org Chem 2017; 82:6615-6620. [PMID: 28593764 DOI: 10.1021/acs.joc.7b00681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our study shows that among aza-heterocycles of various ring sizes, including aziridines, azetidines, pyrrolidines, and piperidines, only N-alkyl pyrrolidines undergo competitive reaction pathways with chloroformates to yield N-dealkylated pyrrolidines and 4-chlorobutyl carbamates. The pathway taken depends on the substituent on the nitrogen, i.e., ring-opening with methyl and ethyl substituents and dealkylation with a benzyl substituent. Computational calculations support the substituent-dependent product formation by showing the energy difference between the transition states of both reaction pathways. Selective ring-opening reactions of N-methyl and N-ethyl pyrrolidine derivatives with chloroformates were utilized to prepare various 4-chlorobutyl carbamate derivatives as valuable 1,4-bifunctional compounds.
Collapse
Affiliation(s)
- Chunghyeon Yu
- Department of Bionanotechnology, Hanyang University , Ansan 15588, Republic of Korea
| | - Mahbubul Alam Shoaib
- Department of Chemistry & Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Naeem Iqbal
- National Institute of Biotechnology and Genetic Engineering , Faisalabad 38000, Pakistan
| | - Jun Soo Kim
- Department of Chemistry & Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies , Yongin 17053, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University , Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Liu H, Jia Y. Ergot alkaloids: synthetic approaches to lysergic acid and clavine alkaloids. Nat Prod Rep 2017; 34:411-432. [PMID: 28300233 DOI: 10.1039/c6np00110f] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2017Ergot alkaloids are among the most important pharmaceuticals and natural toxins. Significant progress has been achieved in recent years on the research of ergot alkaloids. In this review, we re-introduced the history of ergot alkaloids. Meanwhile, we summarized all the natural products and semi-synthetic derivatives of ergot alkaloids. We also briefly described the biosynthesis and semi-synthesis of ergot alkaloid drugs from raw materials obtained by fermentation. Moreover, we reviewed the advances that have been made in the total synthesis of ergot alkaloids since 2000.
Collapse
Affiliation(s)
- Haichao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
8
|
Sarkar S, Laha RM, Mitra RN, Maiti DK. Pd II-Catalyzed Oxidative Aldehyde-sp 2C-H Functionalization and Cyclization Using NHC with Mild Oxidant DMSO for the Selective Synthesis of Esters, Sugar-Based Analogues, and β-Hydroxy Chromanones: An 18O-Labeling Study. ACS OMEGA 2016; 1:981-995. [PMID: 30023497 PMCID: PMC6044719 DOI: 10.1021/acsomega.6b00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/04/2016] [Indexed: 06/08/2023]
Abstract
We assume formation of acyl-PdII-N-heterocyclic-carbene (NHC) organometalics for diverse C-O/O-C and C-C/C-O coupling catalysis of direct functionalization and cyclization reactions. We report the first use of dimethyl sulfoxide (DMSO) as an oxidant under an inert atmosphere to O2-sensitive NHC for oxidative transformations. In situ generated imidazolium halides are utilized as a precursor of NHC and as a source of alkyl group for the sp2C-H functionalization of aldehydes to esters under mild conditions. In contrast to the reported NHC-catalyzed esterification strategies, the outstanding substrate scope of this mild catalysis approach is established through synthesis of thermally labile sugar-based chiral esters. Our competition experiments using various unsymmetrical imidazolium halides revealed an ascending rate of migratory aptitude among methyl ≪ allyl < crotyl < cinnamyl < benzyl moiety. DMSO is used as an oxidant for both esterification and cyclization reactions, and the transfer of the DMSO-oxygen to ester is confirmed using an 18O-labeling experiment. The diverse activity using DMSO-oxygen to acyl-PdII-NHC is verified by developing a unique C-C-coupled cyclization with side-chain hydroxylation of olefin to achieve valuable β-hydroxy chromanones.
Collapse
|