1
|
Yoshiki I, Takagaki A, Song JT, Watanabe M, Ishihara T. Conversion of Cellobiose to Formic Acid as a Biomass-Derived Renewable Hydrogen Source Using Solid Base Catalysts. ChemistryOpen 2024:e202400079. [PMID: 39375982 DOI: 10.1002/open.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/11/2024] [Indexed: 10/09/2024] Open
Abstract
Formic acid is considered a promising hydrogen carrier. Biomass-derived formic acid can be obtained by oxidative decomposition of sugars. This study explored the production of formic acid from cellobiose, a disaccharide consisting of d-glucose linked by β-glycosidic bonds using heterogeneous catalysts under mild reaction conditions. The use of alkaline earth metal oxide solid base catalysts like CaO and MgO in the presence of hydrogen peroxide could afford formic acid from cellobiose at 343 K. While CaO gave 14 % yield of formic acid, the oxide itself was converted to a harmful metal peroxide, CaO2 after the reaction. In contrast, MgO could produce formic acid without the formation of the metal peroxide. The difficulty in selectively synthesizing formic acid from cellobiose using these solid base catalysts was due to the poor conversion of cellobiose to glucose. Using a combination of solid acid and base catalysts, a high formic acid yield of 33 % was obtained under mild reaction conditions due to the quantitative hydrolysis of cellobiose to glucose by a solid acid followed by the selective decomposition of glucose to formic acid by a solid base.
Collapse
Affiliation(s)
- Ikuto Yoshiki
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Atsushi Takagaki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Jun Tae Song
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Motonori Watanabe
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsumi Ishihara
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Selective glucose oxidation to organic acids over synthesized bimetallic oxides at low temperatures. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-022-02342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Highly selective oxidation of glucose to formic acid over synthesized hydrotalcite-like catalysts under base free mild conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Takagaki A, Obata W, Ishihara T. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst. ChemistryOpen 2021; 10:954-959. [PMID: 34236148 PMCID: PMC8485787 DOI: 10.1002/open.202100074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Formic acid is one of the most desirable liquid hydrogen carriers. The selective production of formic acid from monosaccharides in water under mild reaction conditions using solid catalysts was investigated. Calcium oxide, an abundant solid base catalyst available from seashell or limestone by thermal decomposition, was found to be the most active of the simple oxides tested, with formic acid yields of 50 % and 66 % from glucose and xylose, respectively, in 1.4 % H2 O2 aqueous solution at 343 K for 30 min. The main reaction pathway is a sequential formation of formic acid from glucose by C-C bond cleavage involving aldehyde groups in the acyclic form. The reaction also involves base-catalyzed aldose-ketose isomerization and retroaldol reaction, resulting in the formation of fructose and trioses including glyceraldehyde and dihydroxyacetone. These intermediates were further decomposed into formic acid or glycolic acid. The catalytic activity remained unchanged for further reuse by a simple post-calcination.
Collapse
Affiliation(s)
- Atsushi Takagaki
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Wataru Obata
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Tatsumi Ishihara
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- Department of Automotive ScienceGraduate School of Integrated Frontier ScienceKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| |
Collapse
|
5
|
Genuino H, Meinds TG, Broekman JOP, Staal M, Brinksma J, Wielema T, Picchioni F, Browne WR, Deuss PJ, Heeres HJ. Iron Tetrasulfonatophthalocyanine-Catalyzed Starch Oxidation Using H 2O 2: Interplay between Catalyst Activity, Selectivity, and Stability. ACS OMEGA 2021; 6:13847-13857. [PMID: 34095677 PMCID: PMC8173618 DOI: 10.1021/acsomega.1c01407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Oxidized starch can be efficiently prepared using H2O2 as an oxidant and iron(III) tetrasulfophthalocyanine (FePcS) as a catalyst, with properties in the same range as those for commercial oxidized starches prepared using NaOCl. Herein, we performed an in-depth study on the oxidation of potato starch focusing on the mode of operation of this green catalytic system and its fate as the reaction progresses. At optimum batch reaction conditions (H2O2/FePcS molar ratio of 6000, 50 °C, and pH 10), a high product yield (91 wt %) was obtained with substantial degrees of substitution (DSCOOH of 1.4 and DSCO of 4.1 per 100 AGU) and significantly reduced viscosity (197 mPa·s) by dosing H2O2. Model compound studies showed limited activity of the catalyst for C6 oxidation, indicating that carboxylic acid incorporation likely results from C-C bond cleavage events. The influence of the process conditions on the stability of the FePcS catalyst was studied using UV-vis and Raman spectroscopic techniques, revealing that both increased H2O2 concentration and temperature promote the irreversible degradation of the FePcS catalyst at high pH. The rate and extent of FePcS degradation were found to strongly depend on the initial H2O2 concentration where also the rapid decomposition of H2O2 by FePcS occurs. These results explain why the slow addition of H2O2 in combination with low FePcS catalyst concentration is beneficial for the efficient application in starch oxidation.
Collapse
Affiliation(s)
- Homer
C. Genuino
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Tim G. Meinds
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J. O. P. Broekman
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel Staal
- Avebe
Innovation Center, Zernikelaan 8, 9747 AW Groningen, The Netherlands
| | - Jelle Brinksma
- Avebe
Innovation Center, Zernikelaan 8, 9747 AW Groningen, The Netherlands
| | - Thomas Wielema
- Avebe
Innovation Center, Zernikelaan 8, 9747 AW Groningen, The Netherlands
| | - Francesco Picchioni
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R. Browne
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hero J. Heeres
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Formic Acid as a Hydrogen Source for the Additive-Free Reduction of Aromatic Carbonyl and Nitrile Compounds at Reusable Supported Pd Catalysts. Catalysts 2020. [DOI: 10.3390/catal10080875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Formic acid can be used as a hydrogen source for the hydrogenations of various aromatic carbonyl and nitrile compounds into their corresponding alcohols and amines using reusable heterogeneous Pd/carbon and Pd/Al2O3 catalysts, respectively, under additive-free and mild reaction conditions.
Collapse
|
7
|
Arias PL, Cecilia JA, Gandarias I, Iglesias J, López Granados M, Mariscal R, Morales G, Moreno-Tost R, Maireles-Torres P. Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00240b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This minireview gives an overview about heterogeneous catalytic technologies for the oxidation of key platform molecules (glucose, 5-hydroxymethylfurfural, furfural and levulinic acid) into valuable chemicals.
Collapse
Affiliation(s)
- Pedro L. Arias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - Juan A. Cecilia
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Iñaki Gandarias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - José Iglesias
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Manuel López Granados
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Rafael Mariscal
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Gabriel Morales
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Ramón Moreno-Tost
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Pedro Maireles-Torres
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| |
Collapse
|
8
|
Li S, Deng W, Wang S, Wang P, An D, Li Y, Zhang Q, Wang Y. Catalytic Transformation of Cellulose and Its Derivatives into Functionalized Organic Acids. CHEMSUSCHEM 2018; 11:1995-2028. [PMID: 29714048 DOI: 10.1002/cssc.201800440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Cellulose is a promising renewable and abundant resource for the production of high-value chemicals, in particular, organic oxygenates, because of its high oxygen/carbon ratio. The sustainable production of hydroxycarboxylic acids and dicarboxylic acids, such as gluconic/glucaric acid, lactic acid, 2,5-furandicarboxylic acid, adipic acid, and terephthalic acid, most of which are monomers of key polymers, have attracted much attention in recent years. The synthesis of these organic acids from cellulose generally involves several tandem reaction steps, and thus, multifunctional catalysts that can catalyze the selective activation of specific C-O or C-C bonds hold the key. This review highlights recent advances in the development of efficient catalytic systems and new strategies for the selective conversion of cellulose or its derived carbohydrates into functionalized organic acids. The reaction mechanism is discussed to offer deep insights into the regioselective cleavage of C-O or C-C bonds.
Collapse
Affiliation(s)
- Shi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Pan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Dongli An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yanyun Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical, Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
9
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Ray NJ, Styrov VV, Karpov EG. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Chaiseeda K, Nishimura S, Ebitani K. Gold Nanoparticles Supported on Alumina as a Catalyst for Surface Plasmon-Enhanced Selective Reductions of Nitrobenzene. ACS OMEGA 2017; 2:7066-7070. [PMID: 31457289 PMCID: PMC6645053 DOI: 10.1021/acsomega.7b01248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 06/09/2023]
Abstract
Au nanoparticles supported on alumina (Au/Al2O3) with average particle size of 3.9 ± 0.7 nm and surface plasmon band centerned at 516.5 nm were prepared by deposition-precipitation method, and their photocatalytic activities for the reduction of nitrobenzene using either formic acid in acetonitrile (method A) or KOH in 2-propanol (method B) were investigated. Even at room temperature, the Au/Al2O3 was found to be highly active and selective for conversion of nitrobenzene to aniline when used with formic acid in acetonitrile or to azobenzene when performed with KOH in 2-propanol under irradiation with green light-emitting diode (517 nm).
Collapse
Affiliation(s)
- Kittichai Chaiseeda
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Natural
Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shun Nishimura
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kohki Ebitani
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|