1
|
Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114:110295. [DOI: 10.1016/j.ygeno.2022.110295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
2
|
Nematode Identification Techniques and Recent Advances. PLANTS 2020; 9:plants9101260. [PMID: 32987762 PMCID: PMC7598616 DOI: 10.3390/plants9101260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
Nematodes are among the most diverse but least studied organisms. The classic morphology-based identification has proved insufficient to the study of nematode identification and diversity, mainly for lack of sufficient morphological variations among closely related taxa. Different molecular methods have been used to supplement morphology-based methods and/or circumvent these problems with various degrees of success. These methods range from fingerprint to sequence analyses of DNA- and/or protein-based information. Image analyses techniques have also contributed towards this success. In this review, we highlight what each of these methods entail and provide examples where more recent advances of these techniques have been employed in nematode identification. Wherever possible, emphasis has been given to nematodes of agricultural significance. We show that these alternative methods have aided nematode identification and raised our understanding of nematode diversity and phylogeny. We discuss the pros and cons of these methods and conclude that no one method by itself provides all the answers; the choice of method depends on the question at hand, the nature of the samples, and the availability of resources.
Collapse
|
3
|
C. Arcos S, Robertson L, Ciordia S, Sánchez-Alonso I, Careche M, Carballeda-Sanguiao N, Gonzalez-Muñoz M, Navas A. Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes (Basel) 2020; 11:E913. [PMID: 32785065 PMCID: PMC7465371 DOI: 10.3390/genes11080913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
The total proteomes of Anisakis simplex s.s., A. pegreffii and their hybrid genotype have been compared by quantitative proteomics (iTRAQ approach), which considers the level of expressed proteins. Comparison was made by means of two independent experiments considering four biological replicates of A. simplex and two each for A. pegreffii and hybrid between both species. A total of 1811 and 1976 proteins have been respectively identified in the experiments using public databases. One hundred ninety-six proteins were found significantly differentially expressed, and their relationships with the nematodes' biological replicates were estimated by a multidimensional statistical approach. Results of pairwise Log2 ratio comparisons among them were statistically treated and supported in order to convert them into discrete character states. Principal component analysis (PCA) confirms the validity of the method. This comparison selected thirty seven proteins as discriminant taxonomic biomarkers among A. simplex, A. pegreffii and their hybrid genotype; 19 of these biomarkers, encoded by ten loci, are specific allergens of Anisakis (Ani s7, Ani s8, Ani s12, and Ani s14) and other (Ancylostoma secreted) is a common nematodes venom allergen. The rest of the markers comprise four unknown or non-characterized proteins; five different proteins (leucine) related to innate immunity, four proteolytic proteins (metalloendopeptidases), a lipase, a mitochondrial translocase protein, a neurotransmitter, a thyroxine transporter, and a structural collagen protein. The proposed methodology (proteomics and statistical) solidly characterize a set of proteins that are susceptible to take advantage of the new targeted proteomics.
Collapse
Affiliation(s)
- Susana C. Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
| | - Lee Robertson
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
- Departamento de Protección Vegetal, INIA. Ctra La Coruña Km 7’5, 28040 Madrid, Spain
| | - Sergio Ciordia
- Unidad de Proteómica Centro Nacional de Biotecnología, CSIC, calle Darwin 3, Campus 11 de Cantoblanco, 28049 Madrid, Spain;
| | - Isabel Sánchez-Alonso
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
| | - Mercedes Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
| | - Noelia Carballeda-Sanguiao
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
- Servicio de Immunología, Hospital Universitario La Paz. Paseo de la Castellana, 261, 28046 Madrid, Spain;
| | - Miguel Gonzalez-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz. Paseo de la Castellana, 261, 28046 Madrid, Spain;
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
| |
Collapse
|
4
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
5
|
Ciordia S, Robertson L, Arcos SC, González MR, Mena MDC, Zamora P, Vieira P, Abrantes I, Mota M, Castagnone-Sereno P, Navas A. Protein markers of Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) populations using quantitative proteomics and character compatibility. Proteomics 2016; 16:1006-14. [PMID: 26718462 DOI: 10.1002/pmic.201500106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/06/2015] [Accepted: 12/29/2015] [Indexed: 01/09/2023]
Abstract
The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity.
Collapse
Affiliation(s)
- Sergio Ciordia
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Lee Robertson
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Susana C Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - María Rosa González
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Paula Zamora
- Centro de Sanidad Forestal de Calabazanos, Consejería de Fomento y Medio Ambiente, Dirección General del Medio Natural, Junta de Castilla y León, Polígono Industrial de Villamuriel de Cerrato, Palencia, España
| | - Paulo Vieira
- NemaLab/ ICAAM (Instituto de Ciências Agrárias e Ambientais Mediterrânicas), Universidade de Évora, Herdade da Mitra, Évora, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Manuel Mota
- NemaLab/ ICAAM (Instituto de Ciências Agrárias e Ambientais Mediterrânicas), Universidade de Évora, Herdade da Mitra, Évora, Portugal
| | - Philippe Castagnone-Sereno
- INRA UMR1355/Université de Nice-SophiaAntipolis/CNRS UMR7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
6
|
Ahmad F, Gopal J, Wu HF. Rapid and highly sensitive detection of single nematode via direct MALDI Mass Spectrometry. Talanta 2012; 93:182-5. [PMID: 22483896 DOI: 10.1016/j.talanta.2012.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/03/2012] [Accepted: 02/05/2012] [Indexed: 10/14/2022]
Abstract
For the first time, we demonstrate the feasibility for the use of MALDI-TOF MS for rapid, direct and sensitive detection of single adult root-knot nematode, Meloidogyne incognita and their second stage juvenile (J(2)). We have proposed simple pretreatment protocols and have demonstrated that the crushed and washed nematodes yielded better spectra. We also report the differentiation between the harmless and harmful stages of the nematode based on mass spectrometric profiling. Peaks at m/z 4350, 4692, 4933, 8725 were only present in the adult stages, while m/z 3220, 3433, 3485, 3830, 6540, 7444, 7770 were unique to the J(2) infective stage. The only common peak to both the phases was at m/z 3277. Thus, we show that MALDI-TOF MS can be used to differentiate between the infective and non-infective stage of the nematode and the detection sensitivity of MALDI-MS could be applied to a single nematode analysis.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | |
Collapse
|
7
|
Chen X, MacDonald MH, Khan F, Garrett WM, Matthews BF, Natarajan SS. Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines. Proteomics 2011; 11:4742-6. [DOI: 10.1002/pmic.201100220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/07/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022]
|
8
|
Mbeunkui F, Scholl EH, Opperman CH, Goshe MB, Bird DM. Proteomic and Bioinformatic Analysis of the Root-Knot Nematode Meloidogyne hapla: The Basis for Plant Parasitism. J Proteome Res 2010; 9:5370-81. [DOI: 10.1021/pr1006069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Flaubert Mbeunkui
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Elizabeth H. Scholl
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Charles H. Opperman
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| | - David McK. Bird
- Department of Molecular and Structural Biochemistry and Plant Nematode Genomes Group, Department of Plant Pathology, NC State University, Raleigh, North Carolina 27695
| |
Collapse
|
9
|
Calvo E, Flores-Romero P, López JA, Navas A. Identification of Proteins Expressing Differences among Isolates of Meloidogyne spp. (Nematoda: Meloidogynidae) by Nano-Liquid Chromatography Coupled to Ion-Trap Mass Spectrometry. J Proteome Res 2005; 4:1017-21. [PMID: 15952751 DOI: 10.1021/pr0500298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Total protein variation (up to ninety-five different positions) was revealed by two-dimensional electrophoresis (2-DE) in 18 isolates from populations of M. arenaria (6 isolates), M. incognita (10), M. javanica (1) plus an unclassified isolate in a previously reported study. Isolates of M. arenaria, M. javanica, Meloidogyne sp., and M. incognita formed two separate groups defined on the basis of two sets of protein positions that could be considered as diagnostic characters, but we could not identify these proteins by MALDI-TOF. To identify these marker positions, nano-liquid chromatography as peptides separation method was coupled to an ion-trap mass spectrometer for induced real-time fragmentation of eluted peptides. Group diagnostic proteins for M. incognita and M. arenaria were in-gel digested and on line analyzed by tandem mass spectrometry (LC-MS/MS). Six proteins out of seven selected spots were unambiguously identified by the analysis of the corresponding MS/MS (MS2) spectrum from parent ions fragmentation: Actin, Enolase, CG3752-PA protein similar to Aldehyde Dehydrogenase, HSP-60 and Translation initiation factor elF-4A. In M. incognita sample, de novo sequencing experiment of doubly charged ion at m/z=936.9 Da in spot 29 identified as enolase, reveals three residue substitutions (K to T, N to T, and D to E) when tentative sequence was compared with that of Anisakis simplex and Onchocerca volvulus enolase, thus three SNPs (single nucleotide polymorphisms) were also possibly identified.
Collapse
Affiliation(s)
- E Calvo
- Museo Nacional de Ciencias Naturales, CSIC, José Gutierrez Abascal 2, Madrid 28006, Spain
| | | | | | | |
Collapse
|
10
|
Biron DG, Joly C, Marché L, Galéotti N, Calcagno V, Schmidt-Rhaesa A, Renault L, Thomas F. First analysis of the proteome in two nematomorph species, Paragordius tricuspidatus (Chordodidae) and Spinochordodes tellinii (Spinochordodidae). INFECTION GENETICS AND EVOLUTION 2005; 5:167-75. [PMID: 15639749 DOI: 10.1016/j.meegid.2004.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 11/16/2022]
Abstract
The proteome of most parasite species is currently unknown. Hairworms (Nematomorpha), 300 species distributed around the world, are parasitic in arthropods (mainly terrestrial species) when juveniles, but they are free-living in aquatic environments when adult. Most aspects of their systematics and biology are currently unknown. The aim of this paper was (i) to report a novel and reproducible protocol for the analysis of the proteome of hairworms using two-dimensional gel electrophoresis (2-DGE) and mass spectrometry (matrix laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)) and (ii) to determine the level of proteomic divergence between two sympatric but taxonomically unrelated nematomorph species in the adult stage, Paragordius tricuspidatus Dufour (Nematomorpha, Gordiidae) and Spinochordodes tellinii Camerano (Nematomorpha, Gordiidae). In total, 689 protein spots were observed for P. tricuspidatus, 575 for S. tellinii. Only 36.2% spots were shared between the two species. Quantitative analysis of the proteins which are common to both parasite species reveals substantial differences in the pattern of protein expression. These results suggest a rapid evolutionary divergence between these two nematomorph families. Also, to test the value of our MALDI-TOF protocol, we used Actin-2 (Act-2), a protein highly conserved in the course of evolution. Peptide mass fingerprint (PMF) data obtained for Act-2 of P. tricuspidatus and S. tellinii suggest a very high homology with Act-2 of different worms species belonging to the Bilateria phylum (Annelida and Nematoda) and more specifically to Lumbricus terrestris (Annelida, Lumbricidae) and Caenorhabditis elegans (Nematoda, Rhabditidae). We discuss our results in relationship with current ideas concerning the use of proteomics in systematics.
Collapse
Affiliation(s)
- David G Biron
- GEMI, UMR CNRS/IRD 2724, IRD, 911 Av. Agropolis BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Current literature in journal of mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:235-244. [PMID: 12577291 DOI: 10.1002/jms.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
12
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003; 4:277-84. [PMID: 18629117 PMCID: PMC2447404 DOI: 10.1002/cfg.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|