1
|
Pharmacologic and Non-Pharmacologic Interventions for HIV-Neuropathy Pain. A Systematic Review and a Meta-Analysis. ACTA ACUST UNITED AC 2019; 55:medicina55120762. [PMID: 31795171 PMCID: PMC6956009 DOI: 10.3390/medicina55120762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Among HIV infection symptoms, sensory neuropathy (HIV-SN) remains a main cause of suffering, with incidence varying from 13-50%. So far, numerous pharmacological and non-pharmacological treatments have been tested, although few evidence-based analgesic options are available. We conducted an up-to-date systematic review and meta-analysis of the literature in order to evaluate the efficacy and safety of pharmacologic and non-pharmacologic treatments for pain control, in patients with HIV neuropathy. Materials and Methods: We searched MEDLINE, EMBASE, Scopus/Elsevier, The Cochrane Central Register of Controlled Trials (CENTRAL), USA Clinical Trials registry, and The International Web of Science up to April 2019. All randomized controlled trials evaluating efficacy and safety of non-pharmacologic and pharmacologic therapies were included. Efficacy was defined as pain reduction during the study period. Safety was estimated from adverse events. A meta-analysis was performed whenever possible. Results: 27 randomized controlled trials (RCTs) were included for analysis (7 evaluating non pharmacologic interventions, 20 pharmacologic therapies). Non-pharmacologic studies (n = 742) involved seven different therapeutic modalities. Only Acupuncture/Moxibustion showed pain reduction over placebo, Gracely Pain Scale Mean (SD): Acu/Moxa 0.85 (0.12), placebo 1.10 (0.09), p = 0.05. Pharmacologic studies, involving 2516 patients revealed efficacy for capsaicin 8% over placebo (mean difference -8.04 [95% CI: -14.92 -1.15], smoked cannabis (where pooling data for meta-analysis was not possible) and recombinant Nerve Growth Factor. Conclusion: Despite various modalities for pain control in HIV-SN, strongest evidence exists for capsaicin 8% and smoked cannabis, although of low methodological quality. Among non-pharmacologic modalities, only Acu/Moxa gave a marginal beneficial effect in one study, possibly limited by inherent methodological flaws.
Collapse
|
2
|
Anticalcifying nanoparticle antibody titer is an independent risk factor for coronary artery calcification. Coron Artery Dis 2011; 22:394-400. [DOI: 10.1097/mca.0b013e3283487d7f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Sommer AP, Zhu D. Phototherapy miracles in a nutshell. Photomed Laser Surg 2009; 27:527-8. [PMID: 19569957 DOI: 10.1089/pho.2009.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Tsurumoto T, Zhu D, Sommer AP. Identification of nanobacteria in human arthritic synovial fluid by method validated in human blood and urine using 200 nm model nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:3324-3328. [PMID: 18522113 DOI: 10.1021/es702857s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Earlier we introduced a biosensor for the identification of nanobacteria in water drops. Here, we generalize its principle and apply it to identify nanobacteria in synovial fluid from a patient with osteoarthritis. Results indicate the prevalence of nanobacteria in the synovial fluid. The identification method is applicable to body fluids such as unfiltered human blood and urine, is independent of culturing procedures, and permits for a rapid detection of nanoparticles in liquid drops. In view of increasing clinical evidence on a contribution of nanobacteria in disease, their reported detection in HIV-infected people in South Africa, laboratory experiments indicating the excretion of viable (i.e., propagating) nanobacteria from humans via urine, the use of human excreta in agricultural irrigation, models predicting an injection of nanoaerosols contained in irrigation water enriched with human excreta into the atmosphere, and the identification of nanobacteria in the terrestrial atmosphere, promote the identification method described in this work to an important tool to monitor nanobacteria in body fluids and environmental samples.
Collapse
Affiliation(s)
- Toshiyuki Tsurumoto
- Department of Orthopaedics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8501, Japan
| | | | | |
Collapse
|
5
|
Abstract
OBJECTIVE The purpose of this study was to identify synergistic effects in the interaction of light with biosystems in the presence of chemical agents. Their systematic analysis promises therapeutic strategies. BACKGROUND DATA Light intensities around 1000 Wm(2) potentially induce density variations in nanoscopic water layers adhering to surfaces in air or subaquatically. In permeable nanoscopic compartments in the interior of biosystems, this could result in powerful flow processes and bidirectional flows for repetitive applications of light. Consequently, external stimulation with light will force microorganisms and cells to incorporate a suitable antiinfective. Nanoscale biosystems, which respond to both light stimulation and antibiotics, are nanobacteria. Responses include growth, inhibition, and slime secretion. Slime secretion was provoked in vitro by gentamycin, an agent proposed for in vivo eradication, and blocked by light. Depending on the field of action, co-operative effects between light and an antiinfective can be exploited by considering two properties of the drug: transmission of light and resorption by the tissue. Antiinfectives can be administered in an active form or via drug delivery systems. In the latter case, a double action of the light could be exploited: stimulated release from the carrier and subsequent uptake by the targeted biosystem. METHODS The attenuation of laser light (670 nm) by antiinfectives was measured in films of different thickness of a vaginal suppository. The effect of 670-nm laser light - not absorbed by water - on nanoscopic water layers was examined by comparing the evaporation time of irradiated drops of water-based nanosuspensions with non-irradiated controls. RESULTS The 6-microm-thick suppository films were virtually transparent to the laser light, and the 1-mm-thick films totally attenuated it. Nanosuspension drops irradiated with 670-nm light needed more time to evaporate than controls. CONCLUSION Low-level light (LLL) therapy is compatible with antiinfectives, and even capable of boosting effects of superficially applied and/or absorbed antiinfectives. Temporal coordination between light treatment and drug administration maximizes drug effects and minimizes possible adverse effects. Irradiation should start when the drug concentration has reached its maximum in the desired field of action. Light-induced flow in nanoscale cavities could represent one mechanism of LLL therapy.
Collapse
|
6
|
Affiliation(s)
- Pasquale Urbano
- Medical School of the University of Florence, Florence, Italy.
| | | |
Collapse
|
7
|
Sommer AP, Pavláth AE. Nanobioaerosols--reconsidering agricultural irrigation in a warming world. ACTA ACUST UNITED AC 2006; 8:341-6. [PMID: 16528417 DOI: 10.1039/b512496d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanobacteria are best described as 60-300 nm nanovesicles. In the body they collect calcium and phosphate to form apatite, adhere to cells, or invade them--processes regulated by a slime based on proteins (primordial proteins). A versatile functionality realized with a minimum of properties equips nanobacteria with a unique survival potential. They were identified in humans, animals, wastewater and the stratosphere. In South Africa they were detected in people infected with HIV. Models indicate that they boost the genetic diversity of the HIV-1 virus. Experiments showed that they are excreted via urine, explaining their presence in the environment. Eradication would be virtually impossible if they had an extraterrestrial origin, implying a permanent bombardment from space. Whereas the biological status of nanobacteria is still not clarified, we postulate here that the native habitat of nanobacteria are mammals, suggesting that at least modern species have their origin on Earth. The thesis results from mapping functions and properties of the slime, and could facilitate the localisation of nanobacterial reservoirs, identification of local distribution routes and tracking of global transport cycles. Agricultural irrigation with water containing excreta from humans infected with nanobacteria could be a central disseminator of the nanobioaerosols.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | |
Collapse
|
8
|
Wood HM, Shoskes DA. The role of nanobacteria in urologic disease. World J Urol 2006; 24:51-4. [PMID: 16402263 DOI: 10.1007/s00345-005-0041-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/07/2005] [Indexed: 01/04/2023] Open
Abstract
Recent data proposing an extremely small, self-replicating agent termed "nanobacteria" has raised a great deal of controversy within the scientific community. Since these agents have been isolated within the genitourinary tract, much research has focused attention on the potential role these particles may play in the development of urologic pathology, including polycystic kidney disease, renal calculi, and chronic prostatitis. Recent clinical research targeting these agents has proven effective in treating some patients with refractory category III prostatitis (chronic pelvic pain syndrome). This article reviews the current state of nanobacteria research and explore where these particles may impact urologic disease.
Collapse
Affiliation(s)
- Hadley M Wood
- Glickman Urological Institute, Cleveland Clinic Foundation Cleveland, Mail Code: A100 OH, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
9
|
Abstract
Nanobacteria are suspected to be responsible for a number of diseases, i.e., kidney stones, heart disease, ovarian cancer, peripheral neuropathy, and reduced bone mineral density. Being protected by a mineral shell consisting of apatite, the nanovesicles can enter eukaryotic cells. Depending on the host's stress level, nanobacteria may carry a substantial layer of a protein based slime, instrumental in collecting calcium phosphate from the environment. Calcium phosphate is known to mediate the uptake of nucleic acids by eukaryotic cells. Surprisingly, a pathogenic effect of nanobacteria in HIV can be derived primarily from the trafficking of calcium phosphate in HIV infected cells, performed by primordial proteins. The inescapable conclusion is that nanobacteria could promote genetic diversity in HIV.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
10
|
Sommer AP, Wickramasinghe NC. Functions and possible provenance of primordial proteins--Part II: microorganism aggregation in clouds triggered by climate change. J Proteome Res 2005; 4:180-4. [PMID: 15707374 DOI: 10.1021/pr0498382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current models predict that the elevation of the Earth's surface temperature due to global warming is accompanied by a warming of the troposphere, and a thickening cloud cover associated with longer-lasting clouds, in particular over land. These effects can have an instant impact on the vitality level of microorganisms in clouds and the spreading of airborne diseases. Microorganisms could originate from locations on the Earth, or even arrive from space. Primordial proteins in nanobacteria, only recently identified in the atmosphere, could play a significant role in clouds--accelerating the formation of cloud droplets and interconnecting nanobacteria (and possibly nanobacteria and other microorganisms), thus enhancing their chances to eventually reach the Earth.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | |
Collapse
|
11
|
Abstract
Primordial proteins regulate the response of nanobacteria to variations in their environment and reinforce existing pathogenic potentials. By analyzing specific response patterns, we predicted the prevalence of nanobacteria in HIV--and in the atmosphere. A current clinical study indicates the identification of a possibly giant nanobacterial reservoir in Africa: a significant fraction of a test group (40 HIV-infected mothers and 13 babies) was infected with nanobacteria. Concurrently, a multitude of 80-300 nm nanovesicles, apparently nanobacteria, were detected in the atmosphere of the Earth. Nanobacterial infections in HIV are possibly comparable to the twin epidemics HIV and tuberculosis. Models inspired by proteomics recommend methods to inactivate nanobacteria (and other slime-producing bacteria) in the body.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | |
Collapse
|
12
|
Abstract
From the observations of different research groups reporting on reduced bone mineral density (BMD) and on a pronounced tendency for kidney stone formation, both in HIV-infected patients, and from results achieved in the treatment of severest peripheral neuropathy with lasers, it is concluded that nanobacteria (NB) could actively contribute to the reduction of BMD. A reduced BMD could primarily stem from NB, extracting calcium and phosphate from blood, affecting the calcium and phosphate homeostasis in humans.
Collapse
|
13
|
Abstract
In January 2004, President George W. Bush unveiled plans to send astronauts to the Moon in 2015 and shortly thereafter to Mars. With the prospect of manned exploration of the planets drawing ever closer, the new discipline of Space Medicine is destined to come to the fore. Moreover, investigations of how human beings function under space conditions could provide important new insights into fundamental questions of human physiology and disease. We draw attention here to one such instance of a disease process that can be provoked by extended periods of exposure to low gravity.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | |
Collapse
|
14
|
Sommer AP, Miyake N, Wickramasinghe NC, Narlikar JV, Al-Mufti S. Functions and Possible Provenance of Primordial Proteins. J Proteome Res 2004; 3:1296-9. [PMID: 15595742 DOI: 10.1021/pr049861n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanobacteria or living nanovesicles are of great interest to the scientific community because of their dual nature: on the one hand, they appear as primal biosystems originating life; on the other hand, they can cause severe diseases. Their survival as well as their pathogenic potential is apparently linked to a self-synthesized protein-based slime, rich in calcium and phosphate (when available). Here, we provide challenging evidence for the occurrence of nanobacteria in the stratosphere, reflecting a possibly primordial provenance of the slime. An analysis of the slime's biological functions may lead to novel strategies suitable to block adhesion modalities in modern bacterial populations.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- A-M Pretorius
- National Health Laboratory Services, Department of Medical Microbiology, University of the Free State, Bloemfontein, South Africa.
| | | | | | | |
Collapse
|
16
|
Sommer AP. Suffocation of Nerve Fibers by Living Nanovesicles: A Model Simulation−Part II. J Proteome Res 2004; 3:1086-8. [PMID: 15473700 DOI: 10.1021/pr049935v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanobacteria may cause peripheral neuropathy by adhesion to the perineurium. This hypothesis receives support from five independent observations: (1) identification of perineurial apatite in diabetic patients with peripheral neuropathy, (2) massive presence of nanobacteria in a diabetic patient, (3) beneficial effect of lasers on peripheral neuropathy, (4) model simulation indicating that perineurial deposition and attachment of nanobacteria is encouraged by both their size and chemical nature, and (5) transient inhibition of neural function by apatite. Initial deposition of (stressed) nanobacteria is promoted by a slime thought to consist of proteins, calcium, and phosphate, and is most likely followed by an immobilization phase, mediated by a bioadhesive capacity of the apatite. Proteomics may hold the key to control both attachment processes.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
17
|
Abstract
A model using nanospheres to allow the simulation of the nonspecific interaction of nanobacteria (NB), one with another or with body tissues, is established. Depending primarily on their concentrations and stress levels, these apatite nanovesicles may nucleate thrombogenic conglomerates in blood, or self-assemble to dense nanoclay layers on surfaces in the body. Partial or total encapsulation of nerve fiber bundles by such mineral layers may interrupt the metabolic exchanges between the surrounded tissue and its immediate environment and may restrict signaling processes. The presented model could provide detailed insight into plaque formation triggered by NB, and the parameters encouraging it.
Collapse
|