1
|
Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Absolute Quantification of Human Serum Albumin Isoforms by Internal Calibration Based on a Top-Down LC-MS Approach. Anal Chem 2024; 96:746-755. [PMID: 38166371 DOI: 10.1021/acs.analchem.3c03933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Well-characterized biomarkers using reliable quantitative methods are essential for the management of various pathologies such as diabetes, kidney, and liver diseases. Human serum albumin (HSA) isoforms are gaining interest as biomarkers of advanced liver pathologies. In view of the structural alterations observed for HSA, insights into its isoforms are required to establish them as reliable biomarkers. Therefore, a robust absolute quantification method seems necessary. In this study, we developed and validated a far more advanced top-down liquid chromatography-mass spectrometry (LC-MS) method for the absolute quantification of HSA isoforms, using myoglobin (Mb) as an internal standard for quantification and for mass recalibration. Two different quantification approaches were investigated based on peak integration from the deconvoluted spectrum and extracted ion chromatogram (XIC). The protein mixture human serum albumin/myoglobin eluted in well-shaped separated peaks. Mb allowed a systematic mass recalibration for every sample, resulting in extremely low mass deviations compared to conventional deconvolution-based methods. In total, eight HSA isoforms of interest were quantified. Specific-isoform calibration curves showing good linearity were obtained by using the deconvoluted peaks. Noticeably, the HSA ionization behavior appeared to be isoform-dependent, suggesting that the use of an enriched isoform solution as a calibration standard for absolute quantification studies of HSA isoforms is necessary. Good repeatability, reproducibility, and accuracy were observed, with better sensitivity for samples with low albumin concentrations compared to routine biochemical assays. With a relatively simple workflow, the application of this method for absolute quantification shows great potential, especially for HSA isoform studies in a clinical context, where a high-throughput method and sensitivity are needed.
Collapse
Affiliation(s)
- Roy Lakis
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Franck Saint-Marcoux
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Souleiman El Balkhi
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| |
Collapse
|
2
|
Chowdhury NB, Alsiyabi A, Saha R. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model. Microbiol Spectr 2022; 10:e0146322. [PMID: 35730964 PMCID: PMC9431616 DOI: 10.1128/spectrum.01463-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective. IMPORTANCE In this work, we reconstructed the first ME model for a purple nonsulfur bacterium (PNSB). Using the ME model, different aspects of R. palustris metabolism were examined. First, the ME model was used to analyze how reducing power entering the R. palustris cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. Furthermore, the ME model predicted electron flux through ferredoxin as a major bottleneck in distributing electrons to nitrogenase enzymes. Next, the ME model characterized different nitrogenase enzymes and successfully recapitulated experimentally observed temperature regulations of those enzymes. Identifying the bottleneck responsible for transferring an electron to nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase enzymes can have profound implications in metabolic engineering, such as hydrogen production from R. palustris. Another interesting application of this ME model can be to take advantage of its redox balancing strategy to gain an understanding of the regulatory mechanism of biodegradable plastic production precursors, such as polyhydroxybutyrate (PHB).
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Adil Alsiyabi
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Shrestha HK, Appidi MR, Villalobos Solis MI, Wang J, Carper DL, Burdick L, Pelletier DA, Doktycz MJ, Hettich RL, Abraham PE. Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiol 2021; 21:308. [PMID: 34749649 PMCID: PMC8574000 DOI: 10.1186/s12866-021-02370-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background Microbe-microbe interactions between members of the plant rhizosphere are important but remain poorly understood. A more comprehensive understanding of the molecular mechanisms used by microbes to cooperate, compete, and persist has been challenging because of the complexity of natural ecosystems and the limited control over environmental factors. One strategy to address this challenge relies on studying complexity in a progressive manner, by first building a detailed understanding of relatively simple subsets of the community and then achieving high predictive power through combining different building blocks (e.g., hosts, community members) for different environments. Herein, we coupled this reductionist approach with high-resolution mass spectrometry-based metaproteomics to study molecular mechanisms driving community assembly, adaptation, and functionality for a defined community of ten taxonomically diverse bacterial members of Populus deltoides rhizosphere co-cultured either in a complex or defined medium. Results Metaproteomics showed this defined community assembled into distinct microbiomes based on growth media that eventually exhibit composition and functional stability over time. The community grown in two different media showed variation in composition, yet both were dominated by only a few microbial strains. Proteome-wide interrogation provided detailed insights into the functional behavior of each dominant member as they adjust to changing community compositions and environments. The emergence and persistence of select microbes in these communities were driven by specialization in strategies including motility, antibiotic production, altered metabolism, and dormancy. Protein-level interrogation identified post-translational modifications that provided additional insights into regulatory mechanisms influencing microbial adaptation in the changing environments. Conclusions This study provides high-resolution proteome-level insights into our understanding of microbe-microbe interactions and highlights specialized biological processes carried out by specific members of assembled microbiomes to compete and persist in changing environmental conditions. Emergent properties observed in these lower complexity communities can then be re-evaluated as more complex systems are studied and, when a particular property becomes less relevant, higher-order interactions can be identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02370-4.
Collapse
Affiliation(s)
- Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.,Department of Genome Science and Technology, University of Tennessee-Knoxville, 37996, Knoxville, Tennessee, United States
| | - Manasa R Appidi
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.,Department of Genome Science and Technology, University of Tennessee-Knoxville, 37996, Knoxville, Tennessee, United States
| | | | - Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Leah Burdick
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.
| |
Collapse
|
4
|
Zhang Z, Hug C, Tao Y, Bitsch F, Yang Y. Solving Complex Biologics Truncation Problems by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1928-1935. [PMID: 33395284 DOI: 10.1021/jasms.0c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With increasing protein therapeutics being designed as non-mAb (non-monoclonal antibody) modalities, additional efforts and resources are required to develop and characterize such therapeutic proteins. Truncation is an emerging issue for manufacturing of non-mAb drug substances and requires sophisticated methods to investigate. In this paper, we describe two cases with complex truncation problems where traditional methods such as intact mass spectrometry led to inclusive or wrong identifications. Therefore, we developed an online top-down LC-MS (liquid chromatography-mass spectrometry) based workflow to study truncated drug substances, and we successfully identified the clipping locations. Compared to other orthogonal methods, this method provides a unique capability of solving protein clipping problems. The successful identification of truncated species and the high compatibility to routine intact MS make it a very valuable tool for resolving truncation problems during protein production in the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhe Zhang
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Christian Hug
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| | - Yuanqi Tao
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Francis Bitsch
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| | - Yang Yang
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, CH-4057, Basel, Switzerland
| |
Collapse
|
5
|
Schmitt ND, Berger JM, Conway JB, Agar JN. Increasing Top-Down Mass Spectrometry Sequence Coverage by an Order of Magnitude through Optimized Internal Fragment Generation and Assignment. Anal Chem 2021; 93:6355-6362. [DOI: 10.1021/acs.analchem.0c04670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Joshua M. Berger
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeremy B. Conway
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Dai Y, Shortreed MR, Scalf M, Frey BL, Cesnik AJ, Solntsev S, Schaffer LV, Smith LM. Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database. J Proteome Res 2017; 16:4156-4165. [PMID: 28968100 PMCID: PMC5679780 DOI: 10.1021/acs.jproteome.7b00516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A proteoform family is a group of related molecular forms of a protein (proteoforms) derived from the same gene. We have previously described a strategy to identify proteoforms and elucidate proteoform families in complex mixtures of intact proteins. The strategy is based upon measurements of two properties for each proteoform: (i) the accurate proteoform intact-mass, measured by liquid chromatography/mass spectrometry (LC-MS), and (ii) the number of lysine residues in each proteoform, determined using an isotopic labeling approach. These measured properties are then compared with those extracted from a catalog of theoretical proteoforms containing protein sequences and localized post-translational modifications (PTMs) for the organism under study. A match between the measured properties and those in the catalog constitutes an identification of the proteoform. In the present study, this strategy is extended by utilizing a global PTM discovery database and is applied to the widely studied model organism Escherichia coli, providing the most comprehensive elucidation of E. coli proteoforms and proteoform families to date.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anthony J. Cesnik
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan Solntsev
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Leah V. Schaffer
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
8
|
Catazaro J, Lowe AJ, Cerny RL, Powers R. The NMR solution structure and function of RPA3313: a putative ribosomal transport protein from Rhodopseudomonas palustris. Proteins 2016; 85:93-102. [PMID: 27802574 DOI: 10.1002/prot.25201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 01/15/2023]
Abstract
Protein function elucidation often relies heavily on amino acid sequence analysis and other bioinformatics approaches. The reliance is extended to structure homology modeling for ligand docking and protein-protein interaction mapping. However, sequence analysis of RPA3313 exposes a large, unannotated class of hypothetical proteins mostly from the Rhizobiales order. In the absence of sequence and structure information, further functional elucidation of this class of proteins has been significantly hindered. A high quality NMR structure of RPA3313 reveals that the protein forms a novel split ββαβ fold with a conserved ligand binding pocket between the first β-strand and the N-terminus of the α-helix. Conserved residue analysis and protein-protein interaction prediction analyses reveal multiple protein binding sites and conserved functional residues. Results of a mass spectrometry proteomic analysis strongly point toward interaction with the ribosome and its subunits. The combined structural and proteomic analyses suggest that RPA3313 by itself or in a larger complex may assist in the transportation of substrates to or from the ribosome for further processing. Proteins 2016; 85:93-102. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jonathan Catazaro
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304
| | - Austin J Lowe
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304
| | - Ronald L Cerny
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304
| |
Collapse
|
9
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Małecki J, Dahl HA, Moen A, Davydova E, Falnes PØ. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ). J Biol Chem 2016; 291:9581-95. [PMID: 26929405 DOI: 10.1074/jbc.m115.709261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/31/2022] Open
Abstract
Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans.
Collapse
Affiliation(s)
- Jędrzej Małecki
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Helge-André Dahl
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Anders Moen
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Erna Davydova
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Pål Ø Falnes
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
11
|
Chen B, Peng Y, Valeja SG, Xiu L, Alpert AJ, Ge Y. Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics. Anal Chem 2016; 88:1885-91. [PMID: 26729044 DOI: 10.1021/acs.analchem.5b04285] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent progress in top-down proteomics has led to a demand for mass spectrometry (MS)-compatible chromatography techniques to separate intact proteins using volatile mobile phases. Conventional hydrophobic interaction chromatography (HIC) provides high-resolution separation of proteins under nondenaturing conditions but requires high concentrations of nonvolatile salts. Herein, we introduce a series of more-hydrophobic HIC materials that can retain proteins using MS-compatible concentrations of ammonium acetate. The new HIC materials appear to function as a hybrid form of conventional HIC and reverse phase chromatography. The function of the salt seems to be preserving protein structure rather than promoting retention. Online HIC-MS is feasible for both qualitative and quantitative analysis. This is demonstrated with standard proteins and a complex cell lysate. The mass spectra of proteins from the online HIC-MS exhibit low charge-state distributions, consistent with those commonly observed in native MS. Furthermore, HIC-MS can chromatographically separate proteoforms differing by minor modifications. Hence, this new HIC-MS combination is promising for top-down proteomics.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Santosh G Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Andrew J Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,PolyLC, Inc., 9151 Rumsey Rd., Suite 180, Columbia, Maryland, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin, United States
| |
Collapse
|
12
|
Jang YS, Han MJ, Lee J, Im JA, Lee YH, Papoutsakis ET, Bennett G, Lee SY. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Appl Microbiol Biotechnol 2014; 98:5105-15. [PMID: 24743985 DOI: 10.1007/s00253-014-5738-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023]
Abstract
The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C. acetobutylicum strains, ATCC 824, the non-solventogenic strain, M5 that has lost the solventogenic megaplasmid pSOL1, and the synthetic simplified alcohol forming strain, M5 (pIMP1E1AB) expressing plasmid-based CoA-transferase (CtfAB) and aldehyde/alcohol dehydrogenase (AdhE1). A total of 68 protein spots, corresponding to 56 unique proteins, were unambiguously identified as being differentially present after the phase transitions in the three C. acetobutylicum strains. In addition to changes in proteins known to be involved in solventogenesis (AdhE1 and CtfB), we identified significant alterations in enzymes involved in sugar transport and metabolism, fermentative pathway, heat shock proteins, translation, and amino acid biosynthesis upon entry into the stationary phase. Of these, four increased proteins (AdhE1, CAC0233, CtfB and phosphocarrier protein HPr) and six decreased proteins (butyrate kinase, ferredoxin:pyruvate oxidoreductase, phenylalanyl-tRNA synthetase, adenylosuccinate synthase, pyruvate kinase and valyl-tRNA synthetase) showed similar patterns in the two strains capable of butanol formation. Interestingly, significant changes of several proteins by post-translational modifications were observed in the solventogenic phase. The proteomic data from this study will improve our understanding on how cell physiology is affected through protein levels patterns in clostridia.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ladror DT, Frey BL, Scalf M, Levenstein ME, Artymiuk JM, Smith LM. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions. Biochem Biophys Res Commun 2014; 445:535-41. [PMID: 24486316 DOI: 10.1016/j.bbrc.2014.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.
Collapse
Affiliation(s)
- Daniel T Ladror
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mark E Levenstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Jacklyn M Artymiuk
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Chen G, Pramanik BN. LC-MS for protein characterization: current capabilities and future trends. Expert Rev Proteomics 2014; 5:435-44. [DOI: 10.1586/14789450.5.3.435] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Hettich RL, Pan C, Chourey K, Giannone RJ. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 2013; 85:4203-14. [PMID: 23469896 PMCID: PMC3696428 DOI: 10.1021/ac303053e] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of extensive genome information for many different microbes, including unculturable species in mixed communities from environmental samples, has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. To this end, metaproteomics exploits the power of high-performance mass spectrometry for extensive characterization of the complete suite of proteins expressed by a microbial community in an environmental sample.
Collapse
|
16
|
Strader MB, Hervey WJ, Costantino N, Fujigaki S, Chen CY, Akal-Strader A, Ihunnah CA, Makusky AJ, Court DL, Markey SP, Kowalak JA. A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12. J Proteome Res 2013; 12:1289-99. [PMID: 23305560 DOI: 10.1021/pr3009435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial ribosomal protein S12 contains a universally conserved D88 residue on a loop region thought to be critically involved in translation due to its proximal location to the A site of the 30S subunit. While D88 mutants are lethal this residue has been found to be post-translationally modified to β-methylthioaspartic acid, a post-translational modification (PTM) identified in S12 orthologs from several phylogenetically distinct bacteria. In a previous report focused on characterizing this PTM, our results provided evidence that this conserved loop region might be involved in forming multiple proteins-protein interactions ( Strader , M. B. ; Costantino , N. ; Elkins , C. A. ; Chen , C. Y. ; Patel , I. ; Makusky , A. J. ; Choy , J. S. ; Court , D. L. ; Markey , S. P. ; Kowalak , J. A. A proteomic and transcriptomic approach reveals new insight into betamethylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 2011 , 10 , M110 005199 ). To follow-up on this study, the D88 containing loop was probed to identify candidate binders employing a two-step complementary affinity purification strategy. The first involved an endogenously expressed S12 protein containing a C-terminal tag for capturing S12 binding partners. The second strategy utilized a synthetic biotinylated peptide representing the D88 conserved loop region for capturing S12 loop interaction partners. Captured proteins from both approaches were detected by utilizing SDS-PAGE and one-dimensional liquid chromatography-tandem mass spectrometry. The results presented in this report revealed proteins that form direct interactions with the 30S subunit and elucidated which are likely to interact with S12. In addition, we provide evidence that two proteins involved in regulating ribosome and/or mRNA transcript levels under stress conditions, RNase R and Hfq, form direct interactions with the S12 conserved loop, suggesting that it is likely part of a protein binding interface.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jaffee EG, Lauber MA, Running WE, Reilly JP. In Vitro and In Vivo Chemical Labeling of Ribosomal Proteins: A Quantitative Comparison. Anal Chem 2012; 84:9355-61. [DOI: 10.1021/ac302115m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ethan G. Jaffee
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - Matthew A. Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - William E. Running
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| |
Collapse
|
18
|
Crosby HA, Pelletier DA, Hurst GB, Escalante-Semerena JC. System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases. J Biol Chem 2012; 287:15590-601. [PMID: 22416131 DOI: 10.1074/jbc.m112.352104] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
N-lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously.
Collapse
Affiliation(s)
- Heidi A Crosby
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
19
|
Application of proteomics in the mechanistic study of traditional Chinese medicine. Biochem Soc Trans 2012; 39:1348-52. [PMID: 21936813 DOI: 10.1042/bst0391348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.
Collapse
|
20
|
Zhang D, Liu H, Zhang S, Chen X, Li S, Zhang C, Hu X, Bi K, Chen X, Jiang Y. An effective method for de novo peptide sequencing based on phosphorylation strategy and mass spectrometry. Talanta 2011; 84:614-22. [DOI: 10.1016/j.talanta.2010.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
21
|
Jefferys SR, Giddings MC. Automated data integration and determination of posttranslational modifications with the protein inference engine. Methods Mol Biol 2011; 694:255-90. [PMID: 21082440 DOI: 10.1007/978-1-60761-977-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter describes using the Protein Inference Engine (PIE) to integrate various types of data--especially top down and bottom up mass spectrometer (MS) data--to describe a protein's posttranslational modifications (PTMs). PTMs include cleavage events such as the n-terminal loss of methionine and residue modifications like phosphorylation. Modifications are key elements in many biological processes, but are difficult to study as no single, general method adequately characterizes a protein's PTMs; manually integrating data from several MS experiments is usually required. The PIE is designed to automate this process using a guess and refine process similar to how an expert manually integrates data. The PIE repeatedly "imagines" a possible modification set, evaluates it using available data, and then tries to improve on it. After many rounds of refinement, the resulting modification set is proposed as a candidate answer. Multiple candidate answers are generated to obtain both best and near-best answers. Near-best answers are crucial in allowing for proteins with more than one supported modification pattern (isoforms) and obtaining robust results given incomplete and inconsistent data.The goal of this chapter is to walk the reader through installing and using the downloadable version of PIE, both in general and by means of a specific, detailed example. The example integrates several types of experimental and background (prior) data. It is not a "perfect-world" scenario, but has been designed to illustrate several real-world difficulties that may be encountered when trying to analyze imperfect data.
Collapse
Affiliation(s)
- Stuart R Jefferys
- Department of Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
22
|
Shah B, Kozlowski RL, Han J, Borchers CH. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Methods Mol Biol 2011; 773:259-303. [PMID: 21898261 DOI: 10.1007/978-1-61779-231-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry (MS) is rapidly becoming an indispensable tool for the analysis of posttranslational modifications (PTMs) of proteins, and particularly histone PTMs that regulate physiological processes. The more traditional bottom-up approach of searching for modifications on peptides rather than intact proteins (top-down) has proven useful for finding phosphorylation, acetylation, and ubiquitination sites. With the use of modern instrumentation and various MS-based techniques, peptides and their PTMs can be characterized in a high-throughput manner while still maintaining high sensitivity and specificity. In complement to bottom-up MS, recent advances in MS technology, such as high-field Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, have permitted the study of intact proteins and their modifications. On-line and off-line protein separation instruments coupled to FTICR-MS allow the characterization of PTMs previously undetectable with bottom-up approaches. The use of unique fragmentation techniques in FTICR-MS provides a viable option for the study of labile modifications. In this chapter, we provide a detailed description of the analytical tools - mass spectrometry in particular - that are used to characterize modifications on peptides and proteins. We also examine the applicability of these mass spectrometric techniques to the study of PTMs on histones via both the bottom-up and top-down proteomics approaches.
Collapse
Affiliation(s)
- Brinda Shah
- Department of Biochemistry and Microbiology, and the University of Victoria - Genome British Columbia Protein Center, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
23
|
Strader MB, Costantino N, Elkins CA, Chen CY, Patel I, Makusky AJ, Choy JS, Court DL, Markey SP, Kowalak JA. A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12. Mol Cell Proteomics 2010; 10:M110.005199. [PMID: 21169565 DOI: 10.1074/mcp.m110.005199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-methylthiolation is a novel post-translational modification mapping to a universally conserved Asp 88 of the bacterial ribosomal protein S12. This S12 specific modification has been identified on orthologs from multiple bacterial species. The origin and functional significance was investigated with both a proteomic strategy to identify candidate S12 interactors and expression microarrays to search for phenotypes that result from targeted gene knockouts of select candidates. Utilizing an endogenous recombinant E. coli S12 protein with an affinity tag as bait, mass spectrometric analysis identified candidate S12 binding partners including RimO (previously shown to be required for this post-translational modification) and YcaO, a conserved protein of unknown function. Transcriptomic analysis of bacterial strains with deleted genes for RimO and YcaO identified an overlapping transcriptional phenotype suggesting that YcaO and RimO likely share a common function. As a follow up, quantitative mass spectrometry additionally indicated that both proteins dramatically impacted the modification status of S12. Collectively, these results indicate that the YcaO protein is involved in β-methylthiolation of S12 and its absence impairs the ability of RimO to modify S12. Additionally, the proteomic data from this study provides direct evidence that the E. coli specific β-methylthiolation likely occurs when S12 is assembled as part of a ribosomal subunit.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Reilly JP. De novo sequencing of tryptic peptides derived from Deinococcus radiodurans ribosomal proteins using 157 nm photodissociation MALDI TOF/TOF mass spectrometry. J Proteome Res 2010; 9:3025-34. [PMID: 20377247 DOI: 10.1021/pr901206j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vacuum ultraviolet photodissociation of peptide ions in a matrix assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer is used to characterize peptide mixtures derived from Deinococcus radiodurans ribosomal proteins. Tryptic peptides from 52 proteins were separated by reverse-phase liquid chromatography and spotted onto a MALDI plate. From 192 sample spots, 492 peptide ions were isolated, fragmented by both photodissociation and postsource decay (PSD), and then de novo sequenced. Three-hundred seventy-two peptides yielded sequences with 5 or more amino acids. Homology searches of these sequences against the whole bacterial proteome identified 49 ribosomal proteins, 45 of which matched with two or more peptides. Peptide de novo sequencing identified slightly more proteins than conventional database searches using Mascot and was particularly advantageous in identifying unexpected peptide modifications. In the present analysis, 52 peptide modifications were identified by de novo sequencing, most of which were not recognized by database searches.
Collapse
Affiliation(s)
- Liangyi Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
25
|
Hotta Y, Teramoto K, Sato H, Yoshikawa H, Hosoda A, Tamura H. Classification of Genus Pseudomonas by MALDI-TOF MS Based on Ribosomal Protein Coding in S10−spc−alpha Operon at Strain Level. J Proteome Res 2010; 9:6722-8. [DOI: 10.1021/pr100868d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Hotta
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kanae Teramoto
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroaki Sato
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiromichi Yoshikawa
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Akifumi Hosoda
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroto Tamura
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| |
Collapse
|
26
|
Running WE, Reilly JP. Variation of the chemical reactivity of Thermus thermophilus HB8 ribosomal proteins as a function of pH. Proteomics 2010; 10:3669-87. [DOI: 10.1002/pmic.201000342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Meyer B, Papasotiriou DG, Karas M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 2010; 41:291-310. [DOI: 10.1007/s00726-010-0680-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/25/2010] [Indexed: 01/11/2023]
|
30
|
Yuan H, Zhang L, Hou C, Zhu G, Tao D, Liang Z, Zhang Y. Integrated platform for proteome analysis with combination of protein and peptide separation via online digestion. Anal Chem 2010; 81:8708-14. [PMID: 19788244 DOI: 10.1021/ac900310y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integrated platform with the combination of protein and peptide separation was established via online protein digestion, by which proteins were first separated by a microcolumn packed with mixed weak anion and weak cation exchange (WAX/WCX) particles under a series of salt steps, online digested by a trypsin immobilized microenzymatic reactor (IMER), trapped and desalted by two parallel C8 precolumns, separated by microreversed-phase liquid chromatography (muRPLC) under a linear gradient of organic modifier concentration, and finally identified by electrospray ionization-MS/MS (ESI-MS/MS). To evaluate the performance of such a platform, a mixture of myoglobin, cytochrome c, bovine serum albumin (BSA), and alpha-casein, with mass ranging from 25 ng to 2 microg, was analyzed. Compared to the methods by off-line protein fractionation and shotgun based strategy, the analysis time, including sample preparation, digestion, desalting, separation, and detection, was shortened from ca. 30 to 5 h, and cytochrome c with abundance of 25 ng could be identified with improved sequence coverage. Furthermore, such an integrated platform was successfully applied into the analysis of proteins extracted from human lung cancer cells. Compared with the results obtained by the shotgun approach, the identified protein number was increased by 30%. All these results demonstrated that such an integrated approach would be an attractive alternative to commonly applied approaches for proteome research.
Collapse
Affiliation(s)
- Huiming Yuan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Percy AJ, Schriemer DC. Rheostatic control of tryptic digestion in a microscale fluidic system. Anal Chim Acta 2010; 657:53-9. [DOI: 10.1016/j.aca.2009.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/17/2009] [Accepted: 10/09/2009] [Indexed: 11/25/2022]
|
32
|
Lauber MA, Running WE, Reilly JP. B. subtilis ribosomal proteins: structural homology and post-translational modifications. J Proteome Res 2009; 8:4193-206. [PMID: 19653700 DOI: 10.1021/pr801114k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomal proteins of the model gram-positive bacterium B. subtilis 168 were extensively characterized in a proteomic study. Mass spectra of the 52 proteins expected to be constitutive components of the 70S ribosome were recorded. Peptide MS/MS analysis with an average sequence coverage of 85% supported the identification of these proteins and facilitated the unambiguous assignment of post-translational modifications, including the methylation of S7, L11, and L16 and the N-terminal acetylation of S9. In addition, the high degree of structural homology between B. subtilis and other eubacterial ribosomal proteins was demonstrated through chemical labeling with S-methylthioacetimidate. One striking difference from previous characterizations of bacterial ribosomal proteins is that dozens of protein masses were found to be in error and not easily accounted for by post-translational modifications. This, in turn, led us to discover an inordinate number of sequencing errors in the reference genome of B. subtilis 168. We have found that these errors have been corrected in a recently revised version of the genome.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
33
|
Kertesz V, Connelly HM, Erickson BK, Hettich RL. PTMSearchPlus: Software Tool for Automated Protein Identification and Post-Translational Modification Characterization by Integrating Accurate Intact Protein Mass and Bottom-Up Mass Spectrometric Data Searches. Anal Chem 2009; 81:8387-95. [DOI: 10.1021/ac901163c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vilmos Kertesz
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Heather M. Connelly
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Brian K. Erickson
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Robert L. Hettich
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| |
Collapse
|
34
|
Wu S, Lourette NM, Tolić N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolić L. An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications. J Proteome Res 2009; 8:1347-57. [PMID: 19206473 DOI: 10.1021/pr800720d] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an integrated top-down and bottom-up approach that is facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs high-resolution, reversed-phase (RP) LC separations coupled on-line with a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer to profile and tentatively identify modified proteins, using detected intact protein masses in conjunction with bare protein identifications from the bottom-up analysis of the corresponding LC fractions. Selected identifications are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original fraction used for bottom-up analysis. In a proof-of-principle demonstration, this comprehensive strategy was applied to identify protein isoforms arising from various amino acid modifications (e.g., acetylation, phosphorylation) and genetic variants (e.g., single nucleotide polymorphisms, SNPs). This strategy overcomes major limitations of traditional bottom-up (e.g., inability to characterize multiple unexpected protein isoforms and genetic variants) and top-down (e.g., low throughput) approaches.
Collapse
Affiliation(s)
- Si Wu
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 2009; 16:528-33. [PMID: 19363482 PMCID: PMC2679717 DOI: 10.1038/nsmb.1577] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/19/2009] [Indexed: 11/09/2022]
Abstract
Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. Additionally, though structures of the 50S subunit found no ordered proteins at the PTC, biochemical evidence suggests specific proteins are capable of interacting with the 3′ ends of the tRNA ligands. Here we present structures at 3.5 Å and 3.55 Å resolution of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. Additionally they reveal interactions between ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.
Collapse
|
36
|
Running WE, Reilly JP. Ribosomal Proteins of Deinococcus radiodurans: Their Solvent Accessibility and Reactivity. J Proteome Res 2009; 8:1228-46. [DOI: 10.1021/pr800544y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William E. Running
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
37
|
Chourey K, Thompson MR, Shah M, Zhang B, VerBerkmoes NC, Thompson DK, Hettich RL. Comparative Temporal Proteomics of a Response Regulator (SO2426)-Deficient Strain and Wild-Type Shewanella oneidensis MR-1 During Chromate Transformation. J Proteome Res 2009; 8:59-71. [DOI: 10.1021/pr800776d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karuna Chourey
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Melissa R. Thompson
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Manesh Shah
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Bing Zhang
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Nathan C. VerBerkmoes
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Dorothea K. Thompson
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Robert L. Hettich
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
38
|
Karabacak NM, Li L, Tiwari A, Hayward LJ, Hong P, Easterling ML, Agar JN. Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol Cell Proteomics 2008; 8:846-56. [PMID: 19074999 DOI: 10.1074/mcp.m800099-mcp200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Top-down and bottom-up mass spectrometry methods can generate gas phase fragments and use these to identify proteins. Top-down methods, in addition, can provide the mass of the protein itself and therefore additional structural information. Despite the conceptual advantage of top-down methods, the market share advantage belongs to bottom-up methods as a result of their more robust sample preparation, fragmentation, and data processing methods. Here we report improved fragmentation and data processing methods for top-down mass spectrometry. Specifically we report the use of funnel-skimmer dissociation, a variation of nozzle-skimmer dissociation, and compare its performance with electron capture dissociation. We also debut BIG Mascot, an extended version of Mascot with incorporated top-down MS(2) search ability and the first search engine that can perform both bottom-up and top-down searches. Using BIG Mascot, we demonstrated the ability to identify proteins 1) using only intact protein MS(1), 2) using only MS(2), and 3) using the combination of MS(1) and MS(2). We correctly identified proteins with a wide range of masses, including 13 amyotrophic lateral sclerosis-associated variants of the protein Cu/Zn-superoxide dismutase, and extended the upper mass limit of top-down protein identification to 669 kDa by identifying thyroglobulin.
Collapse
Affiliation(s)
- N Murat Karabacak
- Department of Chemistry and Volen Center for Complex Systems, National Center of Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Heredia-Moya J, Kirk KL. Synthesis of beta-(S-methyl)thioaspartic acid and derivatives. Bioorg Med Chem 2008; 16:5908-13. [PMID: 18468905 PMCID: PMC2587367 DOI: 10.1016/j.bmc.2008.04.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 11/17/2022]
Abstract
Beta-(S-Methyl)thioaspartic acid occurs as a posttranslational modification at position 88 in Escherichia coli ribosomal protein S12, a position that is a mutational hotspot resulting in both antibiotic-resistant and antibiotic-sensitive phenotypes. Critical to research designed to determine the biological function of beta-(S-methyl)thioaspartic acid will be the availability of synthetic beta-(S-methyl)thioaspartic acid as well as derivatives designed for peptide incorporation. We report here the synthesis of beta-(S-methyl)thioaspartic acid and derivatives. The installation of the beta-methylthio moiety into the aspartic acid structure was accomplished by electrophilic sulfenylation of N-protected-l-aspartic acid derivatives with 2,4-dinitrophenyl methyl disulfide. Following this key transformation, we were able to prepare protected beta-(S-methyl)thioaspartic acid derivative suitable for peptide coupling.
Collapse
Affiliation(s)
- Jorge Heredia-Moya
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892. USA
| | - Kenneth L. Kirk
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892. USA
| |
Collapse
|
40
|
Abstract
The current view of ribosomal peptidyl transfer is that the ribosome is a ribozyme and that ribosomal proteins are not involved in catalysis of the chemical reaction. This view is largely based on the first crystal structures of bacterial large ribosomal subunits that did not show any protein components near the peptidyl transferase center (PTC). Recent crystallographic data on the full 70S ribosome from Thermus thermophilus, however, show that ribosomal protein L27 extends with its N-terminus into the PTC in accordance with independent biochemical data, thus raising the question of whether the ribozyme picture is strictly valid. We have carried out extensive computer simulations of the peptidyl transfer reaction in the T. thermophilus ribosome to address the role of L27. The results show a reaction rate similar to that obtained in earlier simulations of the Haloarcula marismortui reaction. Furthermore, deletion of L27 is predicted to only give a minor rate reduction, in agreement with biochemical data, suggesting that the ribozyme view is indeed valid. The N-terminus of L27 is predicted to interact with the A76 phosphate group of the A-site tRNA, thereby explaining the observed impairment of A-site substrate binding for ribosomes lacking L27. Simulations are also reported for the reaction with puromycin, an A-site tRNA analogue which lacks the A76 phosphate group. The calculated energetics shows that this substrate can cause a downward p K a shift of L27 and that the reaction proceeds faster with the L27 N-terminus deprotonated, in contrast to the situation with aminoacyl-tRNA substrates. These results could explain the observed differences in pH dependence between the puromycin and C-puromycin reactions, where the former reaction has been seen to depend on an additional ionizing group besides the attacking amine, and our model predicts this ionizing group to be the N-terminal amine of L27.
Collapse
Affiliation(s)
- Stefan Trobro
- Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
41
|
Arnold RJ, Running W, Reilly JP. Analysis of methylation, acetylation, and other modifications in bacterial ribosomal proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 446:151-61. [PMID: 18373256 DOI: 10.1007/978-1-60327-084-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A wide variety of post-translational modifications of expressed proteins are known to occur in living organisms (1). Although their presence in an organism cannot be predicted from the genome, these modifications can play critical roles in protein structure and function. The identification of post-translational modifications can be critical in understanding the functions of proteins involved in important biological pathways and mass spectrometry offers a fast, accurate method for observing them. This chapter describes the procedure for analyzing ribosomal proteins of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Caulobacter crescentus ribosomal proteins by electrospray quadrupole time-of-flight (ESI-QTOF) mass spectrometry.
Collapse
Affiliation(s)
- Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | | |
Collapse
|
42
|
Frank AM, Pesavento JJ, Mizzen CA, Kelleher NL, Pevzner PA. Interpreting top-down mass spectra using spectral alignment. Anal Chem 2008; 80:2499-505. [PMID: 18302345 DOI: 10.1021/ac702324u] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in mass spectrometry instrumentation, such as FTICR and OrbiTrap, have made it possible to generate high-resolution spectra of entire proteins. While these methods offer new opportunities for performing "top-down" studies of proteins, the computational tools for analyzing top-down data are still scarce. In this paper we investigate the application of spectral alignment to the problem of identifying protein forms in top-down mass spectra (i.e., identifying the modifications, mutations, insertions, and deletions). We demonstrate how spectral alignment efficiently discovers protein forms even in the presence of numerous modifications and how the algorithm can be extended to discover positional isomers from spectra of mixtures of isobaric protein forms.
Collapse
Affiliation(s)
- Ari M Frank
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92093-0404, USA.
| | | | | | | | | |
Collapse
|
43
|
RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:1826-31. [PMID: 18252828 DOI: 10.1073/pnas.0708608105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomal protein S12 undergoes a unique posttranslational modification, methylthiolation of residue D88, in Escherichia coli and several other bacteria. Using mass spectrometry, we have identified the enzyme responsible for this modification in E. coli, the yliG gene product. This enzyme, which we propose be called RimO, is a radical-S-adenosylmethionine protein that bears strong sequence similarity to MiaB, which methylthiolates tRNA. We show that RimO and MiaB represent two of four subgroups of a larger, ancient family of likely methylthiotransferases, the other two of which are typified by Bacillus subtilis YqeV and Methanococcus jannaschii Mj0867, and we predict that RimO is unique among these subgroups in its modification of protein as opposed to tRNA. Despite this, RimO has not significantly diverged from the other three subgroups at the sequence level even within the C-terminal TRAM domain, which in the methyltransferase RumA is known to bind the RNA substrate and which we presume to be responsible for substrate binding and recognition in all four subgroups of methylthiotransferases. To our knowledge, RimO and MiaB represent the most extreme known case of resemblance between enzymes modifying protein and nucleic acid. The initial results presented here constitute a bioinformatics-driven prediction with preliminary experimental validation that should serve as the starting point for several interesting lines of further inquiry.
Collapse
|
44
|
Thompson MR, Thompson DK, Hettich RL. Systematic assessment of the benefits and caveats in mining microbial post-translational modifications from shotgun proteomic data: the response of Shewanella oneidensis to chromate exposure. J Proteome Res 2008; 7:648-58. [PMID: 18171020 DOI: 10.1021/pr070531n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations, whereas oxidations have been implicated as an indicator of stress. Shewanella oneidensis MR-1 is a Gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The data set used in this study consisted of tandem mass spectra derived from midlog phase aerobic cultures of S. oneidensis either native or shocked with 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a subdatabase first from a nonmodification search was evaluated with DBDigger. The use of higher-scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total data set using the DBDigger algorithm. However, the FDR climbs to unacceptably high levels when only PTM peptides are considered. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate ( approximately 25%) for the searched spectra. InsPecT was found to have a much lower, and thus more acceptable, FDR than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.
Collapse
Affiliation(s)
- Melissa R Thompson
- Graduate School of Genome Science and Technology, Oak Ridge National Laboratory and University of Tennessee, Knoxville, Tennessee 37830, USA
| | | | | |
Collapse
|
45
|
Teramoto K, Sato H, Sun L, Torimura M, Tao H, Yoshikawa H, Hotta Y, Hosoda A, Tamura H. Phylogenetic Classification of Pseudomonas putida Strains by MALDI-MS Using Ribosomal Subunit Proteins as Biomarkers. Anal Chem 2007; 79:8712-9. [DOI: 10.1021/ac701905r] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kanae Teramoto
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Hiroaki Sato
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Liwei Sun
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Masaki Torimura
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Hiroaki Tao
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Hiromichi Yoshikawa
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yudai Hotta
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Akifumi Hosoda
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Hiroto Tamura
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan, and Department of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
46
|
Carroll AJ, Heazlewood JL, Ito J, Millar AH. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 2007; 7:347-69. [PMID: 17934214 DOI: 10.1074/mcp.m700052-mcp200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.
Collapse
Affiliation(s)
- Adam J Carroll
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology and School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M316, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
47
|
Teramoto K, Sato H, Sun L, Torimura M, Tao H. A Simple Intact Protein Analysis by MALDI-MS for Characterization of Ribosomal Proteins of Two Genome-Sequenced Lactic Acid Bacteria and Verification of Their Amino Acid Sequences. J Proteome Res 2007; 6:3899-907. [PMID: 17854216 DOI: 10.1021/pr070218l] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid identification of bacteria by a bioinformatics-based approach, which processes the mass spectra observed by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), relies on the calculated masses of ribosomal subunit proteins as biomarkers predicted from amino acid sequences found in protein sequence databases. To verify the actual state of the registered sequence information, a simple intact protein analysis by MALDI-MS using cell lysates as samples was applied to the characterization of ribosomal proteins from genome-sequenced Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains. This method avoided the risk of loss of some subunit proteins and the formation of disulfide bonds during the purification of ribosomal proteins. By comparing this with the MALDI mass spectra of different strains and carrying out manual inspection of sequence information, a total of five errors in N-terminal amino acid sequences were identified. After sequence correction, approximately 40 out of 53 subunit proteins could be assigned, considering N-terminal methionine loss only as a post-translational modification. These show promise for use as practical biomarkers for the rapid identification of S. thermophilus and L. bulgaricus. After verification of these amino acid sequences, mass differences relative to those of genome-sequenced strains have the potential for distinguishing bacteria at the strain level.
Collapse
Affiliation(s)
- Kanae Teramoto
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | | | | | | | | |
Collapse
|
48
|
Hervey WJ, Strader MB, Hurst GB. Comparison of Digestion Protocols for Microgram Quantities of Enriched Protein Samples. J Proteome Res 2007; 6:3054-61. [PMID: 17616116 DOI: 10.1021/pr070159b] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Standard biochemical techniques that are used for protein enrichments, such as affinity isolation and density gradient centrifugation, frequently yield high-nanogram to low-microgram quantities at a significant expenditure of resources and time. The characterization of selected protein enrichments by the "shotgun" mass spectrometry approach is often compromised by the lack of effective and efficient in-solution proteolysis protocols specifically tailored for these small quantities of proteins. This study compares the results of five different digestion protocols that were applied to 2.5 mug portions of protein isolates from two disparate sources: Rhodopseudomonas palustris 70S ribosomal proteins, and Bos taurus microtubule-associated proteins (MAPs). Proteolytic peptides produced according to each protocol in each type of protein isolate were analyzed by one-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effectiveness of each digestion protocol was assessed on the basis of three parameters: number of peptide identifications, number of protein identifications, and sequence coverage. The two protocols using a solvent containing 80% acetonitrile (CH3CN) for trypsin digestions performed as well as, and in some instances better than, protocols employing other solvents and chaotropes in both types of protein isolates. A primary advantage of the 80% CH3CN protocol is that it requires fewer sample manipulation steps.
Collapse
Affiliation(s)
- W Judson Hervey
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6131, USA
| | | | | |
Collapse
|
49
|
Abstract
Methylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S-adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra- or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
50
|
Narasimhan C, Tabb DL, Verberkmoes NC, Thompson MR, Hettich RL, Uberbacher EC. MASPIC: intensity-based tandem mass spectrometry scoring scheme that improves peptide identification at high confidence. Anal Chem 2007; 77:7581-93. [PMID: 16316165 DOI: 10.1021/ac0501745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Algorithmic search engines bridge the gap between large tandem mass spectrometry data sets and the identification of proteins associated with biological samples. Improvements in these tools can greatly enhance biological discovery. We present a new scoring scheme for comparing tandem mass spectra with a protein sequence database. The MASPIC (Multinomial Algorithm for Spectral Profile-based Intensity Comparison) scorer converts an experimental tandem mass spectrum into a m/z profile of probability and then scores peak lists from potential candidate peptides using a multinomial distribution model. The MASPIC scoring scheme incorporates intensity, spectral peak density variations, and m/z error distribution associated with peak matches into a multinomial distribution. The scoring scheme was validated on two standard protein mixtures and an additional set of spectra collected on a complex ribosomal protein mixture from Rhodopseudomonas palustris. The results indicate a 5-15% improvement over Sequest for high-confidence identifications. The performance gap grows as sequence database size increases. Additional tests on spectra from proteinase-K digest data showed similar performance improvements demonstrating the advantages in using MASPIC for studying proteins digested with less specific proteases. All these investigations show MASPIC to be a versatile and reliable system for peptide tandem mass spectral identification.
Collapse
Affiliation(s)
- Chandrasegaran Narasimhan
- Graduate School of Genome Science and Technology, University of Tennessee--Oak Ridge National Laboratory, 37830-8026, USA.
| | | | | | | | | | | |
Collapse
|