1
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
2
|
Huang YP, Chang NW. Proteomic analysis of oral cancer reveals new potential therapeutic targets involved in the Warburg effect. Clin Exp Pharmacol Physiol 2018; 44:880-887. [PMID: 28453233 DOI: 10.1111/1440-1681.12774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/28/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Activation of peroxisome proliferator-activated receptor alpha (PPARα) has been reported to disrupt tumour metabolism and to promote anticancer activity through interfering with the Warburg effect. This study is to investigate whether Warburg effect-related proteins also could be identified in oral tumour lesions and to explore the functional significance of PPARα in metabolic shift. Five pairs of tongue tumour tissues and adjacent reference tissues obtained from 4-NQO/arecoline induced mouse model were analyzed by 2-d-gel-electrophoresis and LC-MS. Further, the hexokinase II level, pyruvate dehydrogenase (PDH) activity, and metabolites of glycolysis and TCA cycle were all examined in order to validate the effect of PPARα on metabolic shift. Changes in protein expression levels revealed that seven proteins, which were involved in glycolysis, the tricarboxylic acid cycle, and the respiratory chain, were down-regulated in tumour tissues. We found that activation of PPARα through fenofibrate could inhibit oral cancer cell growth and switch the way of energy production from the Warburg effect to oxidative phosphorylation. Fenofibrate induced a reduction of hexokinase II protein levels, increases in PDH activity and metabolites of the TCA cycle, and an impairment of ATP production. These findings suggested that activation of the PPARα to reprogram the metabolic pathway might impair the Warburg effect and trigger cancer cell death. The study provides a novel view of changes in protein expression profiles involved in the Warburg effect during oral tumourigenesis. Activation of the PPARα to impair the Warburg effect might offer a new strategy for oral cancer treatment.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Nai-Wen Chang
- Department of Biochemistry, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Kaldma A, Klepinin A, Chekulayev V, Mado K, Shevchuk I, Timohhina N, Tepp K, Kandashvili M, Varikmaa M, Koit A, Planken M, Heck K, Truu L, Planken A, Valvere V, Rebane E, Kaambre T. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Int J Biochem Cell Biol 2014; 55:171-86. [PMID: 25218857 DOI: 10.1016/j.biocel.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used. Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis-Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60-80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides. The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase. Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed. Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.
Collapse
Affiliation(s)
- Andrus Kaldma
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kati Mado
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Minna Varikmaa
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andre Koit
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | - Laura Truu
- Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- Cancer Research Competence Center, Tallinn, Estonia
| | | | - Egle Rebane
- Cancer Research Competence Center, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Tallinn University, Tallinn, Estonia.
| |
Collapse
|
4
|
Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived. J Transl Med 2014; 94:222-34. [PMID: 24365748 PMCID: PMC4108175 DOI: 10.1038/labinvest.2013.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023] Open
Abstract
In order to advance a culture model of human colonic neoplasia, we developed methods for the isolation and in vitro maintenance of intact colonic crypts from normal human colon tissue and adenomas. Crypts were maintained in three-dimensional Matrigel culture with a simple, serum-free, low Ca(2+) (0.15 mM) medium. Intact colonic crypts from normal human mucosa were viably maintained for 3-5 days with preservation of the in situ crypt-like architecture, presenting a distinct base and apex. Abnormal structures from adenoma tissue could be maintained through multiple passages (up to months), with expanding buds/tubules. Immunohistochemical markers for intestinal stem cells (Lgr5), growth (Ki67), differentiation (E-cadherin, cytokeratin 20 (CK20) and mucin 2 (MUC2)) and epithelial turnover (Bax, cleaved Caspase-3), paralleled the changes in function. The epithelial cells in normal crypts followed the physiological sequence of progression from proliferation to differentiation to dissolution in a spatially and temporally appropriate manner. Lgr5 expression was seen in a few basal cells of freshly isolated crypts, but was not detected after 1-3 days in culture. After 24 h in culture, crypts from normal colonic tissue continued to show strong Ki67 and MUC2 expression at the crypt base, with a gradual decrease over time such that by days 3-4 Ki67 was not expressed. The differentiation marker CK20 increased over the same period, eventually becoming intense throughout the whole crypt. In adenoma-derived structures, expression of markers for all stages of progression persisted for the entire time in culture. Lgr5 showed expression in a few select cells after months in culture. Ki67 and MUC2 were largely associated with the proliferative budding regions while CK20 was localized to the parent structure. This ex vivo culture model of normal and adenomatous crypts provides a readily accessible tool to help understand the growth and differentiation process in human colonic epithelium.
Collapse
|
5
|
Kočevar N, Grazio SF, Komel R. Two-dimensional gel electrophoresis of gastric tissue in an alkaline pH range. Proteomics 2014; 14:311-21. [PMID: 24293252 DOI: 10.1002/pmic.201200574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/09/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
2DE in combination with MS has facilitated the discovery of several proteins with altered abundance in gastric cancer. While acidic and wide pH ranges have been widely investigated, analysis in the alkaline pH range has not been specifically performed in gastric cancer to date. In the present study, we initially optimized the 2DE in alkaline pH range (pH 7-11) for gastric tissue samples. Using a modified lysis buffer, we analyzed pooled nontumor and tumor samples for proteins with altered abundance in gastric adenocarcinoma. We successfully identified 38 silver-stained spots as 24 different proteins. Four of these were chosen for investigation with immunoblotting on individual paired samples to determine whether the changes seen in 2DE represent the overall abundance of the protein or possibly only a single form. While mitochondrial trifunctional protein (MTP) subunits were decreased in 2DE gels, immunoblotting identified their overall abundance as being differently dysregulated: in the gastric tumor samples, the MTP-α subunit was decreased, and the MTP-β subunit was increased. On the other hand, heterogenous nuclear ribonucleoprotein M and galectin-4 were increased in the gastric tumor samples in both 2DE and immunoblotting.
Collapse
Affiliation(s)
- Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
6
|
Abstract
OBJECTIVES We evaluated whether pancreatic main duct fluid can provide protein biomarkers with prognostic value. METHODS Mass spectrometry proteomics was applied to as little as 20µL of fluid collected at the time of tumor surgical resection. Biomarker proteins identified for 27 patients were correlated with clinical outcomes. RESULTS Thirteen patients had pancreatic ductal adenocarcinomas, 4 had intraductal papillary mucinous neoplasm with in situ adenocarcinoma, 5 had ampullary adenocarcinomas, 2 had intraductal papillary mucinous neoplasms, and 3 had benign diseases. In pathologic stage II or higher pancreatic ductal adenocarcinoma, moderate or high expression of S100A8 or S100A9 proteins was associated with a median disease recurrence-free survival of 5.8 months compared with 17.3 months in patients with low expression (P = 0.002). Median overall survival was 12.6 versus 27 months for patients with moderate to high versus low S100A8 and A9 expression (P = 0.02). CONCLUSIONS This analysis suggests distinct proteomic signatures for pancreatic cancer. Patients in our study with elevated levels of S100A8 or A9 in the ductal fluid, a near absence of pancreatic enzymes, and high levels of mucins were found to have significantly worse prognosis. Although further validation is needed to corroborate these findings, analysis of pancreatic ductal fluid is a promising tool for identifying biomarkers of interest.
Collapse
|
7
|
Shipman M, Lubick K, Fouchard D, Gurram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection. PLoS One 2013; 8:e69558. [PMID: 23990884 PMCID: PMC3749201 DOI: 10.1371/journal.pone.0069558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/09/2013] [Indexed: 01/02/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - Kirk Lubick
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - David Fouchard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rajani Gurram
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Paul Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
8
|
Global expression study in colorectal cancer on proteins with alkaline isoelectric point by two-dimensional difference gel electrophoresis. J Proteomics 2011; 74:858-73. [PMID: 21385629 DOI: 10.1016/j.jprot.2011.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 01/01/2023]
Abstract
Colorectal cancer is one of the leading causes of cancer death worldwide. To identify candidates for biomarkers and therapeutic targets, we investigated the proteome of colorectal cancer tissues. Using 2D-DIGE in combination with our original large format electrophoresis apparatus, we compared surgically resected normal and tumor tissues from 53 patients with colorectal cancer. We focused on proteins with an alkaline pI using IPG gels for the alkaline range. We observed 1687 protein spots, and found 100 spots with statistical (p<0.01) and significant (>2-fold) differences between the normal and the tumor tissue groups. Among these 100 protein spots, five showed a different intensity between tumor tissues from the stage-II and the stage-III patients. MS experiments revealed that these 100 protein spots corresponded to 58 unique proteins. These included six proteins which had not been previously reported to be associated with colorectal cancer. Among these proteins, five were not reported in any type of malignancy. IEF/western blotting confirmed the differences in protein expression between the normal and the tumor tissues. These results may provide an insight for biomarker development and drug target discovery in colorectal cancer.
Collapse
|
9
|
Patel BB, Li XM, Dixon MP, Blagoi EL, Nicolas E, Seeholzer SH, Cheng D, He YA, Coudry RA, Howard SD, Riddle DM, Cooper HS, Boman BM, Conrad P, Crowell JA, Bellacosa A, Knudson A, Yeung AT, Kopelovich L. APC +/- alters colonic fibroblast proteome in FAP. Oncotarget 2011; 2:197-208. [PMID: 21411865 PMCID: PMC3195363 DOI: 10.18632/oncotarget.241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a "one-hit" effect.
Collapse
Affiliation(s)
| | - Xin-Ming Li
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maketa P. Dixon
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena L. Blagoi
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Steven H. Seeholzer
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David Cheng
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yin A. He
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Renata A. Coudry
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon D. Howard
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dawn M. Riddle
- Cell Culture facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harry S. Cooper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bruce M. Boman
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peggy Conrad
- University of California at San Francisco, San Francisco, California
| | - James A. Crowell
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Alfred Knudson
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anthony T. Yeung
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
10
|
Miah SMS, Purdy AK, Rodin NB, MacFarlane AW, Oshinsky J, Alvarez-Arias DA, Campbell KS. Ubiquitylation of an internalized killer cell Ig-like receptor by Triad3A disrupts sustained NF-κB signaling. THE JOURNAL OF IMMUNOLOGY 2011; 186:2959-69. [PMID: 21270397 DOI: 10.4049/jimmunol.1000112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Killer cell Ig-like receptor (KIR) with two Ig-like domains and a long cytoplasmic domain 4 (2DL4; CD158d) is a unique KIR expressed on human NK cells, which stimulates cytokine production, but mechanisms regulating its expression and function are poorly understood. By yeast two-hybrid screening, we identified the E3 ubiquitin ligase, Triad3A, as an interaction partner for the 2DL4 cytoplasmic domain. The protein interaction was confirmed in vivo, and Triad3A expression induced polyubiquitylation and degradation of 2DL4. Overexpression of Triad3A selectively abrogated the cytokine-producing function of 2DL4, whereas Triad3A short hairpin RNA reversed ubiquitylation and restored cytokine production. Expression of Triad3A in an NK cell line did not affect receptor surface expression, internalization, or early signaling, but significantly reduced receptor turnover and suppressed sustained NF-κB activation. 2DL4 endocytosis was found to be vital to stimulate cytokine production, and Triad3A expression diminished localization of internalized receptor in early endosomes. Our results reveal a critical role for endocytosed 2DL4 receptor to generate sustained NF-κB signaling and drive cytokine production. We conclude that Triad3A is a key negative regulator of sustained 2DL4-mediated NF-κB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Toward a high resolution 2-DE profile of the normal human liver proteome using ultra-zoom gels. SCIENCE CHINA-LIFE SCIENCES 2011; 54:25-33. [DOI: 10.1007/s11427-010-4120-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/18/2010] [Indexed: 11/27/2022]
|
12
|
Nikoulina SE, Andon NL, McCowen KM, Hendricks MD, Lowe C, Taylor SW. A primary colonic crypt model enriched in enteroendocrine cells facilitates a peptidomic survey of regulated hormone secretion. Mol Cell Proteomics 2010; 9:728-41. [PMID: 20081152 DOI: 10.1074/mcp.m900529-mcp200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To enable the first physiologically relevant peptidomic survey of gastrointestinal tissue, we have developed a primary mouse colonic crypt model enriched for enteroendocrine L-cells. The cells in this model were phenotypically profiled using PCR-based techniques and showed peptide hormone and secretory and processing marker expression at mRNA levels that were increased relative to the parent tissue. Co-localization of glucagon-like peptide-1 and peptide YY, a characteristic feature of L-cells, was demonstrated by double label immunocytochemistry. The L-cells displayed regulated hormone secretion in response to physiological and pharmacological stimuli as measured by immunoassay. Using a high resolution mass spectrometry-based platform, more than 50 endogenous peptides (<16 kDa), including all known major hormones, were identified a priori. The influence of culture conditions on peptide relative abundance and post-translational modification was characterized. The relative abundance of secreted peptides in the presence/absence of the stimulant forskolin was measured by label-free quantification. All peptides exhibiting a statistically significant increase in relative concentration in the culture media were derived from prohormones, consistent with a cAMP-coupled response. The only peptides that exhibited a statistically significant decrease in secretion on forskolin stimulation were derived from annexin A1 and calcyclin. Biophysical interactions between annexin A1 and calcyclin have been reported very recently and may have functional consequences. This work represents the first step in characterizing physiologically relevant peptidomic secretion of gastrointestinally derived primary cells and will aid in elucidating new endocrine function.
Collapse
|
13
|
Kask L, Larsson K, Bjellqvist B. Elimination of basic gaps at high pH values in 2-DE. Proteomics 2009; 9:5558-61. [DOI: 10.1002/pmic.200900091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Abstract
OBJECTIVES There are currently no diagnostic indicators that are consistently reliable, obtainable, and conclusive for diagnosing and risk-stratifying pancreatic cysts. Proteomic analyses were performed to explore pancreatic cyst fluids to yield effective diagnostic biomarkers. METHODS We have prospectively recruited 20 research participants and prepared their pancreatic cyst fluids specifically for proteomic analyses. Proteomic approaches applied were as follows: (1) matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry peptidomics with LC/MS/MS (HPLC-tandem mass spectrometry) protein identification; (2) 2-dimensional gel electrophoresis; (3) GeLC/MS/MS (tryptic digestion of proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by LC/MS/MS). RESULTS Sequencing of more than 350 free peptides showed that exopeptidase activities rendered peptidomics of cyst fluids unreliable; protein nicking by proteases in the cyst fluids produced hundreds of protein spots from the major proteins, making 2-dimensional gel proteomics unmanageable; GeLC/MS/MS revealed a panel of potential biomarker proteins that correlated with carcinoembryonic antigen (CEA). CONCLUSIONS Two homologs of amylase, solubilized molecules of 4 mucins, 4 solubilized CEA-related cell adhesion molecules (CEACAMs), and 4 S100 homologs may be candidate biomarkers to facilitate future pancreatic cyst diagnosis and risk-stratification. This approach required less than 40 microL of cyst fluid per sample, offering the possibility to analyze cysts smaller than 1 cm in diameter.
Collapse
|
15
|
Yeung AT, Patel BB, Li XM, Seeholzer SH, Coudry RA, Cooper HS, Bellacosa A, Boman BM, Zhang T, Litwin S, Ross EA, Conrad P, Crowell JA, Kopelovich L, Knudson A. One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Res 2008; 68:7579-86. [PMID: 18794146 PMCID: PMC2562578 DOI: 10.1158/0008-5472.can-08-0856] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We studied patients with Familial Adenomatous Polyposis (FAP) because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry, and validation by two-dimensional gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription, and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention.
Collapse
Affiliation(s)
- Anthony T Yeung
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vâlcu CM, Schlink K. Reduction of proteins during sample preparation and two-dimensional gel electrophoresis of woody plant samples. Proteomics 2006; 6:1599-605. [PMID: 16456882 DOI: 10.1002/pmic.200500314] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein extraction procedure and the reducing agent content (DTT, dithioerythritol, tributyl phosphine and tris (2-carboxyethyl) phosphine (TCEP)) of the sample and rehydration buffers were optimised for European beech leaves and roots and Norway spruce needles. Optimal extraction was achieved with 100 mM DTT for leaves and needles and a mixture of 2 mM TCEP and 50 mM DTT for roots. Performing IEF in buffers containing hydroxyethyldisulphide significantly enhanced the quality of separation for all proteins except for acidic root proteins, which were optimally focused in the same buffer as extracted.
Collapse
Affiliation(s)
- Cristina-Maria Vâlcu
- Section of Forest Genetics, Technische Universität München, Freising-Weihenstephan, Germany.
| | | |
Collapse
|
17
|
Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL. Proteomic Analysis of Colorectal Cancer Reveals Alterations in Metabolic Pathways. Mol Cell Proteomics 2006; 5:1119-30. [PMID: 16554294 DOI: 10.1074/mcp.m500432-mcp200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer is the second leading killer cancer worldwide and presently the most common cancer among males in Singapore. The study aimed to detect changes of protein profiles associated with the process of colorectal tumorigenesis to identify specific protein markers for early colorectal cancer detection and diagnosis or as potential therapeutic targets. Seven pairs of colorectal cancer tissues and adjacent normal mucosa were examined by two-dimensional gel electrophoresis at basic pH range (pH 7-10). Intensity changes of 34 spots were detected with statistical significance. 16 of the 34 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. Changes in protein expression levels revealed a significantly enhanced glycolytic pathway (Warburg effect), a decreased gluconeogenesis, a suppressed glucuronic acid pathway, and an impaired tricarboxylic acid cycle. Observed changes in protein abundance were verified by two-dimensional DIGE. These changes reveal an underlying mechanism of colorectal tumorigenesis in which the roles of impaired tricarboxylic acid cycle and the Warburg effect may be critical.
Collapse
Affiliation(s)
- Xuezhi Bi
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chaze T, Bouley J, Chambon C, Barboiron C, Picard B. Mapping of alkaline proteins in bovine skeletal muscle. Proteomics 2006; 6:2571-5. [PMID: 16493707 DOI: 10.1002/pmic.200500452] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In agricultural sciences, proteomics has become the new hope for analyzing the meat quality traits that are closely related to the skeletal muscle traits. 2-DE muscle maps of many species have been recently reported and used to find molecular markers of meat quality traits. However, one limitation of 2-DE based analyses is due to the limited alkaline protein separation. Considering this problem, there is a need to use recent advances that have markedly improved the 2-DE based analysis of alkaline proteins. Hence, the present study provides additional information concerning the alkaline proteome of bovine skeletal muscle by using an appropriate protocol to characterize proteins over the entire range of pH 7-11. A total of 32 distinct gene products corresponding to 60 protein spots were identified by PMF and grouped in seven categories according to their main function. This 2-D map will contribute to muscle proteome studies since a significant portion of proteins is in the alkaline pH range.
Collapse
Affiliation(s)
- Thibault Chaze
- Herbivore Research Unit, Muscle Growth and Metabolism Group, INRA, France
| | | | | | | | | |
Collapse
|
19
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|