1
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
2
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Ding HS, Chen S, Li M, Cheng GL, Zhao HL, Yang YX. Quantitative comparative phosphoproteomic analysis of the effects of colostrum and milk feeding on liver tissue of neonatal calves. J Dairy Sci 2021; 104:8265-8275. [PMID: 33865590 DOI: 10.3168/jds.2020-20097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Posttranslational modifications, mostly phosphorylation, are critical for protein structure and function. However, the association between liver phosphoproteins in neonatal calves and colostrum intake is not well understood. In this study, we examined the liver phosphoproteome profile in neonatal calves after receiving colostrum or milk. Liver tissue samples were collected from control calves (CON, n = 3) 2 h after birth and from calves that received colostrum (CG, n = 3) or milk (MG, n = 3) 24 h after birth. Hepatic phosphoprotein expression profiles were analyzed using quantitative proteomics based on the liquid chromatography-tandem mass spectrometry method. In total, 1,587 phosphorylated sites were identified in 1,011 liver proteins. The most abundant phosphorylation site AA was serine (87.5%), followed by threonine (11.9%) and tyrosine (0.5%). Among the 1,011 phosphoproteins, 219, 453, and 26 displayed differential expression in the CG versus MG, CG versus CON, and MG versus CON comparisons, respectively. Differentially expressed phosphoproteins in the CG-MG comparison included 3-phosphoinositide-dependent protein kinase 1, glucose transporter member 4, protein kinase N2, and vinculin, which were mainly involved in the glycogen metabolic process, transport, growth and development, and cell adhesion process, according to Gene Ontology analysis. Pathway analysis indicated their enrichment in the insulin signaling pathway, spliceosome, and adherens junction. The CG-CON comparison identified differentially expressed phosphoproteins and their target genes that were largely involved in the cellular process, macromolecule metabolic process, developmental process, and transport. Pathway analysis indicated their association with endocytosis, mechanistic target of rapamycin, AMP-activated protein kinase, and insulin signaling pathways. These data demonstrate that changes in the phosphoproteins of liver tissues may play an important role in energy metabolism and immune response in the calves that received colostrum. These results provide novel insights into the crucial roles of protein phosphorylation during the early life of newborn calves.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H S Ding
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - S Chen
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - M Li
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
4
|
Yang M, Deng W, Cao X, Wang L, Yu N, Zheng Y, Wu J, Wu R, Yue X. Quantitative Phosphoproteomics of Milk Fat Globule Membrane in Human Colostrum and Mature Milk: New Insights into Changes in Protein Phosphorylation during Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4546-4556. [PMID: 32208690 DOI: 10.1021/acs.jafc.9b06850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorylation is a widespread posttranslational protein modification and is important in various biological processes. However, milk fat globule membrane (MFGM) phosphoproteins have not been explored systematically in human milk. Here, we used quantitative phosphoproteomics to analyze phosphorylation sites in human MFGM proteins and their differences at different stages of lactation; 305 phosphorylation sites on 170 proteins and 269 phosphorylation sites on 170 proteins were identified in colostrum and mature MFGM, respectively. Among these, 71 phosphorylation sites on 48 proteins were differentially expressed between the different stages of lactation. Osteopontin in human MFGM was the most heavily phosphorylated protein, with a total of 39 identified phosphorylation sites. Our results shed light on phosphorylation sites, composition, and biological functions of MFGM phosphoproteins in human colostrum and mature milk, and provide novel insights into the crucial roles of protein phosphorylation during infant development.
Collapse
Affiliation(s)
- Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei Deng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lijie Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Na Yu
- Liaoning General Fair Testing Company, Ltd, Shenyang 110026, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
5
|
Yu C, Wu Q, Sun C, Tang M, Sun J, Zhan Y. The Phosphoproteomic Response of Okra ( Abelmoschus esculentus L.) Seedlings to Salt Stress. Int J Mol Sci 2019; 20:ijms20061262. [PMID: 30871161 PMCID: PMC6470868 DOI: 10.3390/ijms20061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 01/30/2023] Open
Abstract
Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings’ responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography–tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with ‘photosynthesis antenna proteins’ and ‘RNA degradation’. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress.
Collapse
Affiliation(s)
- Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinqfei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Mengling Tang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Junwei Sun
- College of modern science and technology, China Jiliang University, Hangzhou 310018, China.
| | - Yihua Zhan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Jatropha Curcas Seedling under Chilling Stress. Int J Mol Sci 2019; 20:ijms20010208. [PMID: 30626061 PMCID: PMC6337099 DOI: 10.3390/ijms20010208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023] Open
Abstract
As a promising energy plant for biodiesel, Jatropha curcas is a tropical and subtropical shrub and its growth is affected by one of major abiotic stress, chilling. Therefore, we adopt the phosphoproteomic analysis, physiological measurement and ultrastructure observation to illustrate the responsive mechanism of J. curcas seedling under chilling (4 °C) stress. After chilling for 6 h, 308 significantly changed phosphoproteins were detected. Prolonged the chilling treatment for 24 h, obvious physiological injury can be observed and a total of 332 phosphoproteins were examined to be significantly changed. After recovery (28 °C) for 24 h, 291 phosphoproteins were varied at the phosphorylation level. GO analysis showed that significantly changed phosphoproteins were mainly responsible for cellular protein modification process, transport, cellular component organization and signal transduction at the chilling and recovery periods. On the basis of protein-protein interaction network analysis, phosphorylation of several protein kinases, such as SnRK2, MEKK1, EDR1, CDPK, EIN2, EIN4, PI4K and 14-3-3 were possibly responsible for cross-talk between ABA, Ca2+, ethylene and phosphoinositide mediated signaling pathways. We also highlighted the phosphorylation of HOS1, APX and PIP2 might be associated with response to chilling stress in J. curcas seedling. These results will be valuable for further study from the molecular breeding perspective.
Collapse
|
7
|
Liu GT, Jiang JF, Liu XN, Jiang JZ, Sun L, Duan W, Li RM, Wang Y, Lecourieux D, Liu CH, Li SH, Wang LJ. New insights into the heat responses of grape leaves via combined phosphoproteomic and acetylproteomic analyses. HORTICULTURE RESEARCH 2019; 6:100. [PMID: 31666961 PMCID: PMC6804945 DOI: 10.1038/s41438-019-0183-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Heat stress is a serious and widespread threat to the quality and yield of many crop species, including grape (Vitis vinifera L.), which is cultivated worldwide. Here, we conducted phosphoproteomic and acetylproteomic analyses of leaves of grape plants cultivated under four distinct temperature regimes. The phosphorylation or acetylation of a total of 1011 phosphoproteins with 1828 phosphosites and 96 acetyl proteins with 148 acetyl sites changed when plants were grown at 35 °C, 40 °C, and 45 °C in comparison with the proteome profiles of plants grown at 25 °C. The greatest number of changes was observed at the relatively high temperatures. Functional classification and enrichment analysis indicated that phosphorylation, rather than acetylation, of serine/arginine-rich splicing factors was involved in the response to high temperatures. This finding is congruent with previous observations by which alternative splicing events occurred more frequently in grapevine under high temperature. Changes in acetylation patterns were more common than changes in phosphorylation patterns in photosynthesis-related proteins at high temperatures, while heat-shock proteins were associated more with modifications involving phosphorylation than with those involving acetylation. Nineteen proteins were identified with changes associated with both phosphorylation and acetylation, which is consistent with crosstalk between these posttranslational modification types.
Collapse
Affiliation(s)
- Guo-Tian Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- College of Horticulture, Northwest A&F University, Yangling, 712100 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Jian-Fu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Xin-Na Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Jin-Zhu Jiang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Rui-Min Li
- College of Horticulture, Northwest A&F University, Yangling, 712100 China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - David Lecourieux
- Universite´ de Bordeaux, ISVV, Ecophysiologie et Ge´nomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France
- INRA, ISVV, Ecophysiologie et Ge´nomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France
| | - Chong-Huai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Shao-Hua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Li-Jun Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
8
|
Wu L, Wang S, Tian L, Wu L, Li M, Zhang J, Li P, Zhang W, Chen Y. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination. J Proteomics 2018; 177:75-87. [DOI: 10.1016/j.jprot.2018.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/03/2018] [Accepted: 02/12/2018] [Indexed: 01/11/2023]
|
9
|
Rurek M, Czołpińska M, Pawłowski TA, Krzesiński W, Spiżewski T. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes. Int J Mol Sci 2018; 19:ijms19030877. [PMID: 29547512 PMCID: PMC5877738 DOI: 10.3390/ijms19030877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
10
|
Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots. Int J Mol Sci 2017; 18:ijms18102158. [PMID: 29039783 PMCID: PMC5666839 DOI: 10.3390/ijms18102158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs). Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.
Collapse
|
11
|
Jha SK, Malik S, Sharma M, Pandey A, Pandey GK. Recent Advances in Substrate Identification of Protein Kinases in Plants and Their Role in Stress Management. Curr Genomics 2017; 18:523-541. [PMID: 29204081 PMCID: PMC5684648 DOI: 10.2174/1389202918666170228142703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation-dephosphorylation is a well-known regulatory mechanism in biological systems and has become one of the significant means of protein function regulation, modulating most of the biological processes. Protein kinases play vital role in numerous cellular processes. Kinases transduce external signal into responses such as growth, immunity and stress tolerance through phosphorylation of their target proteins. In order to understand these cellular processes at the molecular level, one needs to be aware of the different substrates targeted by protein kinases. Advancement in tools and techniques has bestowed practice of multiple approaches that enable target identification of kinases. However, so far none of the methodologies has been proved to be as good as a panacea for the substrate identification. In this review, the recent advances that have been made in the identifications of putative substrates and the implications of these kinases and their substrates in stress management are discussed.
Collapse
Affiliation(s)
- Saroj K Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Shikha Malik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
12
|
Wang Y, Tong X, Qiu J, Li Z, Zhao J, Hou Y, Tang L, Zhang J. A phosphoproteomic landscape of rice (Oryza sativa) tissues. PHYSIOLOGIA PLANTARUM 2017; 160:458-475. [PMID: 28382632 DOI: 10.1111/ppl.12574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Protein phosphorylation is an important posttranslational modification that regulates various plant developmental processes. Here, we report a comprehensive, quantitative phosphoproteomic profile of six rice tissues, including callus, leaf, root, shoot meristem, young panicle and mature panicle from Nipponbare by employing a mass spectrometry (MS)-based, label-free approach. A total of 7171 unique phosphorylation sites in 4792 phosphopeptides from 2657 phosphoproteins were identified, of which 4613 peptides were differentially phosphorylated (DP) among the tissues. Motif-X analysis revealed eight significantly enriched motifs, such as [sP], [Rxxs] and [tP] from the rice phosphosites. Hierarchical clustering analysis divided the DP peptides into 63 subgroups, which showed divergent spatial-phosphorylation patterns among tissues. These clustered proteins are functionally related to nutrition uptake in roots, photosynthesis in leaves and tissue differentiation in panicles. Phosphorylations were specific in the tissues where the target proteins execute their functions, suggesting that phosphorylation might be a key mechanism to regulate the protein activity in different tissues. This study greatly expands the rice phosphoproteomic dataset, and also offers insight into the regulatory roles of phosphorylation in tissue development and functions.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yuxuan Hou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
13
|
Pi Z, Zhao ML, Peng XJ, Shen SH. Phosphoproteomic Analysis of Paper Mulberry Reveals Phosphorylation Functions in Chilling Tolerance. J Proteome Res 2017; 16:1944-1961. [PMID: 28357858 DOI: 10.1021/acs.jproteome.6b01016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paper mulberry is a valuable woody species with a good chilling tolerance. In this study, phosphoproteomic analysis, physiological measurement, and mRNA quantification were employed to explore the molecular mechanism of chilling (4 °C) tolerance in paper mulberry. After chilling for 6 h, 427 significantly changed phosphoproteins were detected in paper mulberry seedlings without obvious physiological injury. When obvious physiological injury occurred after chilling for 48 h, a total of 611 phosphoproteins were found to be significantly changed at the phosphorylation level. Several protein kinases, especially CKII, were possibly responsible for these changes according to conserved sequence analysis. The results of Gene Ontology analysis showed that phosphoproteins were mainly responsible for signal transduction, protein modification, and translation during chilling. Additionally, transport and cellular component organization were enriched after chilling for 6 and 48 h, respectively. On the basis of the protein-protein interaction network analysis, a protein kinase and phosphatases hub protein (P1959) were found to be involved in cross-talk between Ca2+, BR, ABA, and ethylene-mediated signaling pathways. We also highlighted the phosphorylation of BpSIZ1 and BpICE1 possibly impacted on the CBF/DREB-responsive pathway. From these results, we developed a schematic for the chilling tolerance mechanism at phosphorylation level.
Collapse
Affiliation(s)
- Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mei-Ling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xian-Jun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| | - Shi-Hua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| |
Collapse
|
14
|
Yuan LL, Zhang M, Yan X, Bian YW, Zhen SM, Yan YM. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Sci Rep 2016; 6:35280. [PMID: 27748408 PMCID: PMC5066223 DOI: 10.1038/srep35280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/16/2016] [Indexed: 01/18/2023] Open
Abstract
Drought stress is a major abiotic stress affecting plant growth and development. In this study, we performed the first dynamic phosphoproteome analysis of Brachypodium distachyon L. seedling leaves under drought stress for different times. A total of 4924 phosphopeptides, contained 6362 phosphosites belonging to 2748 phosphoproteins. Rigorous standards were imposed to screen 484 phosphorylation sites, representing 442 unique phosphoproteins. Comparative analyses revealed significant changes in phosphorylation levels at 0, 6, and 24 h under drought stress. The most phosphorylated proteins and the highest phosphorylation level occurred at 6 h. Venn analysis showed that the up-regulated phosphopeptides at 6 h were almost two-fold those at 24 h. Motif-X analysis identified the six motifs: [sP], [Rxxs], [LxRxxs], [sxD], [sF], and [TP], among which [LxRxxs] was also previously identified in B. distachyon. Results from molecular function and protein-protein interaction analyses suggested that phosphoproteins mainly participate in signal transduction, gene expression, drought response and defense, photosynthesis and energy metabolism, and material transmembrane transport. These phosphoproteins, which showed significant changes in phosphorylation levels, play important roles in signal transduction and material transmembrane transport in response to drought conditions. Our results provide new insights into the molecular mechanism of this plant’s abiotic stress response through phosphorylation modification.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, China.,College of Life Science, Heze University, 274015 Shandong, China
| | - Xing Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Shou-Min Zhen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
15
|
Wu X, Gong F, Cao D, Hu X, Wang W. Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 2016; 16:847-65. [PMID: 26616472 DOI: 10.1002/pmic.201500301] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 11/11/2022]
Abstract
Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Wu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fangping Gong
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Di Cao
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xiuli Hu
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
16
|
Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Sci Rep 2015; 5:18155. [PMID: 26659305 PMCID: PMC4676064 DOI: 10.1038/srep18155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA.
Collapse
|
17
|
Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 2014; 15:1029. [PMID: 25427527 PMCID: PMC4301063 DOI: 10.1186/1471-2164-15-1029] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is an economically important grain crop. Two-dimensional gel-based approaches are limited by the low identification rate of proteins and lack of accurate protein quantitation. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteome and phosphorylated proteins analyses during wheat grain development. RESULTS The proteome profiles and phosphoprotein characterization of the metabolic proteins during grain development of the elite Chinese bread wheat cultivar Yanyou 361 were studied using the iTRAQ-based quantitative proteome approach, TiO2 microcolumns, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among 1,146 non-redundant proteins identified, 421 showed at least 2-fold differences in abundance, and they were identified as differentially expressed proteins (DEPs), including 256 upregulated and 165 downregulated proteins. Of the 421 DEPs, six protein expression patterns were identified, most of which were up, down, and up-down expression patterns. The 421 DEPs were classified into nine functional categories mainly involved in different metabolic processes and located in the membrane and cytoplasm. Hierarchical clustering analysis indicated that the DEPs involved in starch biosynthesis, storage proteins, and defense/stress-related proteins significantly accumulated at the late grain development stages, while those related to protein synthesis/assembly/degradation and photosynthesis showed an opposite expression model during grain development. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 12 representative genes encoding different metabolic proteins showed certain transcriptional and translational expression differences during grain development. Phosphorylated proteins analyses demonstrated that 23 DEPs such as AGPase, sucrose synthase, Hsp90, and serpins were phosphorylated in the developing grains and were mainly involved in starch biosynthesis and stress/defense. CONCLUSIONS Our results revealed a complex quantitative proteome and phosphorylation profile during wheat grain development. Numerous DEPs are involved in grain starch and protein syntheses as well as adverse defense, which set an important basis for wheat yield and quality. Particularly, some key DEPs involved in starch biosynthesis and stress/defense were phosphorylated, suggesting their roles in wheat grain development.
Collapse
Affiliation(s)
- Chaoying Ma
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Jianwen Zhou
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Guanxing Chen
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yanwei Bian
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Dongwen Lv
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xiaohui Li
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Zhimin Wang
- />College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100094 China
| | - Yueming Yan
- />College of Life Sciences, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
18
|
Kim JY, Wu J, Kwon SJ, Oh H, Lee SE, Kim SG, Wang Y, Agrawal GK, Rakwal R, Kang KY, Ahn IP, Kim BG, Kim ST. Proteomics of rice and Cochliobolus miyabeanus
fungal interaction: Insight into proteins at intracellular and extracellular spaces. Proteomics 2014; 14:2307-18. [DOI: 10.1002/pmic.201400066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Jin Yeong Kim
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Jingni Wu
- Department of Plant Microbe Interactions; Max-Planck Institute for Plant Breeding Research; Cologne Germany
| | - Soon Jae Kwon
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Haram Oh
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - So Eui Lee
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Sang Gon Kim
- National Institute of Crop Science; Rural Development Administration; Suwon South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions; Max-Planck Institute for Plant Breeding Research; Cologne Germany
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Pvt. Ltd; Birgunj Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Pvt. Ltd; Birgunj Nepal
- Organization for Educational Initiatives; University of Tsukuba; Tsukuba Ibaraki Japan
- Department of Anatomy I; Showa University School of Medicine; Shinagawa Tokyo Japan
| | - Kyu Young Kang
- Division of Applied Life Science; Gyeongsang National University; Jinju South Korea
| | - Il-Pyung Ahn
- Molecular Breeding division; National Academy of Agricultural Science, RDA; Suwon South Korea
| | - Beom-Gi Kim
- Molecular Breeding division; National Academy of Agricultural Science, RDA; Suwon South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| |
Collapse
|
19
|
Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 2014; 109:290-308. [PMID: 25065648 DOI: 10.1016/j.jprot.2014.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Drought is a major form of abiotic stress that significantly affects plant growth and development. In this study, we performed the first phosphoproteome analysis of seedling leaves from two bread wheat cultivars (Hanxuan 10 and Ningchun 47) subjected to drought stress. As a result, a total of 191 and 251 unique phosphopeptides, representing 173 and 227 phosphoproteins in two cultivars, respectively, were identified as being significant changes in phosphorylation level (SCPL) under drought stress. Through the comparison of SCPL phosphoproteins between two cultivars, 31 common SCPL phosphoproteins were found in both cultivars. Function analysis showed that the SCPL phosphoproteins in the two cultivars are mainly involved in three biological processes: RNA transcription/processing, stress/detoxification/defense, and signal transduction. Further analyses revealed that some SCPL phosphoproteins may play key roles in signal transduction and the signaling cascade under drought stress. Furthermore, some phosphoproteins related to drought tolerance and osmotic regulation exhibited significant phosphorylation changes. This study used a series of bioinformatics tools to profile the phosphorylation status of wheat seedling leaves under drought stress with greater accuracy. BIOLOGICAL SIGNIFICANCE Drought is of the most studied abiotic stresses, because it severely restricts the development and yield of plants. In this study, large numbers of stress-related phosphoproteins are identified from the two bread wheat cultivars. These phosphoproteins contribute to signal transduction, osmotic regulation and ROS scavenging under water stress. This work provides a detailed insight into the mechanisms of drought response and defense in bread wheat from the perspective of phosphoproteomics, and identifies some important drought-tolerant candidates for further transgenosis study and incorporation into the breeding of resistant cultivars.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Dongwen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Pei Ge
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Guanxing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| |
Collapse
|
20
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
21
|
Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 2013; 12:5025-47. [PMID: 24083463 DOI: 10.1021/pr400628j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee DG, Ahsan N, Kim YG, Kim KH, Lee SH, Lee KW, Rahman MA, Lee BH. Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress. ACTA ACUST UNITED AC 2013. [DOI: 10.5333/kgfs.2013.33.3.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Singh R, Jwa NS. Understanding the Responses of Rice to Environmental Stress Using Proteomics. J Proteome Res 2013; 12:4652-69. [DOI: 10.1021/pr400689j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology,
College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | - Nam-Soo Jwa
- Department of Molecular Biology,
College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| |
Collapse
|
24
|
Slade WO, Ray WK, Williams PM, Winkel BSJ, Helm RF. Effects of exogenous auxin and ethylene on the Arabidopsis root proteome. PHYTOCHEMISTRY 2012; 84:18-23. [PMID: 22989740 DOI: 10.1016/j.phytochem.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/19/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
The phytohormones, auxin and ethylene, together control a wide range of physiological and developmental processes in plants. The lack of knowledge regarding how the underlying signaling processes are reflected at the protein level represents a major gap in understanding phytohormone signaling, including that mediated by crosstalk between auxin and ethylene. Herein is a parallel comparison of the effects of these two hormones on the Arabidopsis root proteome. Arabidopsis seedlings were exposed to 1 μm indole-3-acetic acid (IAA, auxin) or 1 μm 1-amino-cyclopropane carboxylic acid (ACC) for 24h. Root protein extracts were fractionated using two-dimensional gel electrophoresis and the proteins that changed the most were analyzed by MALDI TOF/TOF mass spectrometry. Of the 500 total spots that were matched across all gels, 24 were significantly different after IAA exposure, while seven others were different after ACC exposure. Using rigorous criteria, identities of eight proteins regulated by IAA and five regulated by ACC were assigned. Interestingly, although both hormones affected proteins associated with fundamental cellular processes, no overlap was observed among the proteins affected by auxin or ethylene treatment. This report provides a comparison of the effects of these two hormones relative to a control utilizing equivalent treatment regimes and suggests that, while these hormones communicate to control similar physiological and transcriptional processes, they have different effects on the most abundant proteins in Arabidopsis roots.
Collapse
Affiliation(s)
- William O Slade
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | | | | | | | | |
Collapse
|
25
|
Que S, Li K, Chen M, Wang Y, Yang Q, Zhang W, Zhang B, Xiong B, He H. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites. PLANT METHODS 2012; 8:5. [PMID: 22305189 PMCID: PMC3395875 DOI: 10.1186/1746-4811-8-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/03/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. RESULTS In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC) and Accuracy (ACC) reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default), PhosphoRice archieved a significant increase in MCC of 0.071 (P < 0.01), and an increase in ACC of 4.6%. CONCLUSIONS PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.
Collapse
Affiliation(s)
- Shufu Que
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaobin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfeng Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bangshu Xiong
- Key Laboratory of Nondestructive Test of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
| | - Huaqin He
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Ahmadi N, Negrão S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G, Greco R, Oliveira MM, Piffanelli P, Courtois B. Targeted association analysis identified japonica rice varieties achieving Na(+)/K (+) homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:881-95. [PMID: 21713536 DOI: 10.1007/s00122-011-1634-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/31/2011] [Indexed: 05/18/2023]
Abstract
During the last decade, a large number of QTLs and candidate genes for rice tolerance to salinity have been reported. Using 124 SNP and 52 SSR markers, we targeted 14 QTLs and 65 candidate genes for association mapping within the European Rice Core collection (ERCC) comprising 180 japonica accessions. Significant differences in phenotypic response to salinity were observed. Nineteen distinct loci significantly associated with one or more phenotypic response traits were detected. Linkage disequilibrium between these loci was extremely low, indicating a random distribution of favourable alleles in the ERCC. Analysis of the function of these loci indicated that all major tolerance mechanisms were present in the ERCC although the useful level of expression of the different mechanisms was scattered among different accessions. Under moderate salinity stress some accessions achieved the same level of control of Na(+) concentration and Na(+)/K(+) equilibrium as the indica reference variety for salinity tolerance Nona Bokra, although without sharing the same alleles at several loci associated with Na(+) concentration. This suggests (a) differences between indica and japonica subspecies in the effect of QTLs and genes involved in salinity tolerance and (b) further potential for the improvement of tolerance to salinity above the tolerance level of Nona Bokra, provided the underlying mechanisms are complementary at the whole plant level. No accession carried all favourable alleles, or showed the best phenotypic responses for all traits measured. At least nine accessions were needed to assemble the favourable alleles and all the best phenotypic responses. An effective strategy for the accumulation of the favourable alleles would be marker-assisted population improvement.
Collapse
Affiliation(s)
- N Ahmadi
- CIRAD, UPR AIVA, 34398 Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response. J Proteomics 2011; 74:1301-22. [DOI: 10.1016/j.jprot.2011.02.006] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/01/2023]
|
28
|
Chen X, Zhang W, Zhang B, Zhou J, Wang Y, Yang Q, Ke Y, He H. Phosphoproteins regulated by heat stress in rice leaves. Proteome Sci 2011; 9:37. [PMID: 21718517 PMCID: PMC3150237 DOI: 10.1186/1477-5956-9-37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/30/2011] [Indexed: 12/23/2022] Open
Abstract
Background High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (Oryza sativa L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored. Methods Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting. Results Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins. Conclusion Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H+-ATPase, remains unknown.
Collapse
Affiliation(s)
- Xinhai Chen
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfeng Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiechao Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaobin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqin Ke
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaqin He
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
Zhou Y, Gao F, Li X, Zhang J, Zhang G. Alterations in phosphoproteome under salt stress in Thellungiella roots. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4116-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1-17. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04218.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
31
|
Shen W, Yan P, Gao L, Pan X, Wu J, Zhou P. Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. MOLECULAR PLANT PATHOLOGY 2010; 11:335-46. [PMID: 20447282 PMCID: PMC6640227 DOI: 10.1111/j.1364-3703.2009.00606.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Potyviral helper component-proteinase (HC-Pro) is a multifunctional protein involved in plant-virus interactions. In this study, we constructed a Carica papaya L. plant cDNA library to investigate the host factors interacting with Papaya ringspot virus (PRSV) HC-Pro using a Sos recruitment two-hybrid system (SRS). We confirmed that the full-length papaya calreticulin, designated PaCRT (GenBank accession no. FJ913889), interacts specifically with PRSV HC-Pro in yeast, in vitro and in plant cells using SRS, in vitro protein-binding assay and bimolecular fluorescent complementation assay, respectively. SRS analysis of the interaction between three PaCRT deletion mutants and PRSV HC-Pro demonstrated that the C-domain (residues 307-422), with a high Ca(2+)-binding capacity, was responsible for binding to PRSV HC-Pro. In addition, quantitative real-time reverse transcriptase-polymerase chain reaction assay showed that the expression of PaCRT mRNA was significantly upregulated in the primary stage of PRSV infection, and decreased to near-basal expression levels in noninoculated (healthy) papaya plants with virus accumulation inside host cells. PaCRT is a new calcium-binding protein that interacts with potyviral HC-Pro. It is proposed that the upregulated expression of PaCRT mRNA may be an early defence-related response to PRSV infection in the host plant, and that interaction between PRSV HC-Pro and PaCRT may be involved in plant calcium signalling pathways which could interfere with virus infection or host defence.
Collapse
Affiliation(s)
- Wentao Shen
- Key Biotechnology Laboratory for Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agriculture Sciences (CATAS), 4 Xueyuan Road, Haikou, 571101, China
| | | | | | | | | | | |
Collapse
|
32
|
Enhanced MALDI-TOF MS analysis of phosphopeptides using an optimized DHAP/DAHC matrix. J Biomed Biotechnol 2010; 2010:759690. [PMID: 20339515 PMCID: PMC2842900 DOI: 10.1155/2010/759690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/11/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022] Open
Abstract
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS.
Collapse
|
33
|
Jia XY, He LH, Jing RL, Li RZ. Calreticulin: conserved protein and diverse functions in plants. PHYSIOLOGIA PLANTARUM 2009. [PMID: 19453510 DOI: 10.1111/j.1399-3054.2009.01223.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calreticulin (CRT) is a key Ca2+-binding protein mainly resident in the endoplasmic reticulum (ER), which is highly conserved and extensively expressed in all eukaryotic organisms investigated. The protein plays important roles in a variety of cellular processes including Ca2+ signaling and protein folding. Although calreticulin has been well characterized in mammalian systems, increased investigations have demonstrated that plant CRTs have a number of specific properties different from their animal counterparts. Recent developments on plant CRTs have highlighted the significance of CRTs in plants growth and development as well as biotic and abiotic stress responses. There are at least two distinct groups of calreticulin isoforms in higher plants. Glycosylation of CRT was uniquely observed in plants. In this article, we will describe our current understanding of plant calreticulin gene family, protein structure, cellular localization, and diverse functions in plants. We also discuss the prospects of using this information for genetic improvements of crop plants.
Collapse
Affiliation(s)
- Xiao-Yun Jia
- Center for Agricultural Biotechnology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | | | | |
Collapse
|
34
|
Cheng JS, Yuan YJ. Release of proteins: Insights into oxidative response of Taxus cuspidata cells induced by shear stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Jia XY, He LH, Jing RL, Li RZ. Calreticulin: conserved protein and diverse functions in plants. PHYSIOLOGIA PLANTARUM 2009; 136:127-38. [PMID: 19453510 DOI: 10.1111/j.1399-3054.2009.1223.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calreticulin (CRT) is a key Ca2+-binding protein mainly resident in the endoplasmic reticulum (ER), which is highly conserved and extensively expressed in all eukaryotic organisms investigated. The protein plays important roles in a variety of cellular processes including Ca2+ signaling and protein folding. Although calreticulin has been well characterized in mammalian systems, increased investigations have demonstrated that plant CRTs have a number of specific properties different from their animal counterparts. Recent developments on plant CRTs have highlighted the significance of CRTs in plants growth and development as well as biotic and abiotic stress responses. There are at least two distinct groups of calreticulin isoforms in higher plants. Glycosylation of CRT was uniquely observed in plants. In this article, we will describe our current understanding of plant calreticulin gene family, protein structure, cellular localization, and diverse functions in plants. We also discuss the prospects of using this information for genetic improvements of crop plants.
Collapse
Affiliation(s)
- Xiao-Yun Jia
- Center for Agricultural Biotechnology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | | | | |
Collapse
|
36
|
Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH. Chilling stress-induced proteomic changes in rice roots. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1-11. [PMID: 18433929 DOI: 10.1016/j.jplph.2008.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 05/24/2023]
Abstract
Roots are highly sensitive organs in plants. To gain a better knowledge of the chilling stress responses of plants, it is imperative to analyze the tissue-specific proteome patterns under chilling stress. In the present study, two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry, has been adopted to investigate the protein expression patterns of rice roots in response to chilling stress. Rice seedlings were subjected to 10 degrees C and samples were collected 24 and 72h after treatment. To identify the low-abundant proteins in root tissues, samples were fractionated by 15% polyethylene glycol (PEG), separated by 2-DE, and visualized by silver or CBB staining. A total of 27 up-regulated proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry or electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analysis. Together with the previously identified cold-stress-responsive proteins, a group of novel proteins were identified including acetyl transferase, phosphogluconate dehydrogenase, NADP-specific isocitrate dehydrogenase, fructokinase, PrMC3, putative alpha-soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, and glyoxalase 1. These proteins are involved in several cellular processes, including energy production and metabolism, vesicular trafficking, and detoxification. Gene expression at the mRNA level of some selected proteins revealed that transcription levels are not always concomitant to the translational level. Thus, investigation of root proteome expression and identification of some novel proteins could be useful in better understanding the molecular basis of chilling stress responses in plants.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Division of Applied Life Science, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
38
|
Wang S, Yang S, Yin Y, Guo X, Wang S, Hao D. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome. PLANT MOLECULAR BIOLOGY 2009; 69:167-78. [PMID: 18931920 DOI: 10.1007/s11103-008-9414-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 10/01/2008] [Indexed: 05/23/2023]
Abstract
Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.
Collapse
Affiliation(s)
- Shichen Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Ke Y, Han G, He H, Li J. Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 2008; 379:133-8. [PMID: 19103168 DOI: 10.1016/j.bbrc.2008.12.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
Drought is the largest constraint on rice production in Asia. Protein phosphorylation has been recognized as an important mechanism for environmental stress signaling. However, the differential expression of proteins and phosphoproteins induced by drought in rice is still largely unknown. In this paper, we report the identification of differentially expressed proteins and phosphoproteins induced by drought in rice using proteomic approaches. Three drought-responsive proteins were identified. Late embryogenesis abundant (LEA)-like protein and chloroplast Cu-Zn superoxide dismutase (SOD) were up-regulated by drought whereas Rieske Fe-S precursor protein was down-regulated. Ten drought-responsive phosphoproteins were identified: NAD-malate dehydrogenase, OSJNBa0084K20.14 protein, abscisic acid- and stress-inducible protein, ribosomal protein, drought-induced S-like ribonuclease, ethylene-inducible protein, guanine nucleotide-binding protein beta subunit-like protein, r40c1 protein, OSJNBb0039L24.13 protein and germin-like protein 1. Seven of these phosphoproteins have not previously been reported to be involved in rice drought stress. These results provide new insight into the regulatory mechanism of drought-induced proteins and implicate several previously unrecognized proteins in response to drought stress.
Collapse
Affiliation(s)
- Yuqin Ke
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | | | | | | |
Collapse
|
40
|
He H, Li J. Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun 2008; 371:883-8. [PMID: 18468508 DOI: 10.1016/j.bbrc.2008.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 01/21/2023]
Abstract
Abscisic acid (ABA) is a hormone that regulates plant development and adaptation to environmental stresses. Protein phosphorylation has been recognized as an important mechanism for ABA signaling. However, the target phosphoproteins regulated by ABA are still largely unknown. Here, we report the identification of ABA-regulated phosphoproteins in rice using proteomic approaches. Six ABA-regulated phosphoproteins were identified as G protein beta subunit-like protein, ascorbate peroxidase, manganese superoxide dismutase, triosephosphate isomerase, putative Ca(2+)/H(+) antiporter regulator protein, and glyoxysomal malate dehydrogenase. These results provide new insight into the regulatory mechanism for some ABA signaling proteins and implicate several previously unrecognized proteins in ABA action.
Collapse
Affiliation(s)
- Huaqin He
- Department of Biochemistry and Molecular Biology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA
| | | |
Collapse
|
41
|
de la Fuente van Bentem S, Anrather D, Dohnal I, Roitinger E, Csaszar E, Joore J, Buijnink J, Carreri A, Forzani C, Lorkovic ZJ, Barta A, Lecourieux D, Verhounig A, Jonak C, Hirt H. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 2008; 7:2458-70. [PMID: 18433157 DOI: 10.1021/pr8000173] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An estimated one-third of all proteins in higher eukaryotes are regulated by phosphorylation by protein kinases (PKs). Although plant genomes encode more than 1000 PKs, the substrates of only a small fraction of these kinases are known. By mass spectrometry of peptides from cytoplasmic- and nuclear-enriched fractions, we determined 303 in vivo phosphorylation sites in Arabidopsis proteins. Among 21 different PKs, 12 were phosphorylated in their activation loops, suggesting that they were in their active state. Immunoblotting and mutational analysis confirmed a tyrosine phosphorylation site in the activation loop of a GSK3/shaggy-like kinase. Analysis of phosphorylation motifs in the substrates suggested links between several of these PKs and many target sites. To perform quantitative phosphorylation analysis, peptide arrays were generated with peptides corresponding to in vivo phosphorylation sites. These peptide chips were used for kinome profiling of subcellular fractions as well as H 2O 2-treated Arabidopsis cells. Different peptide phosphorylation profiles indicated the presence of overlapping but distinct PK activities in cytosolic and nuclear compartments. Among different H 2O 2-induced PK targets, a peptide of the serine/arginine-rich (SR) splicing factor SCL30 was most strongly affected. SRPK4 (SR protein-specific kinase 4) and MAPKs (mitogen-activated PKs) were found to phosphorylate this peptide, as well as full-length SCL30. However, whereas SRPK4 was constitutively active, MAPKs were activated by H 2O 2. These results suggest that SCL30 is targeted by different PKs. Together, our data demonstrate that a combination of mass spectrometry with peptide chip phosphorylation profiling has a great potential to unravel phosphoproteome dynamics and to identify PK substrates.
Collapse
Affiliation(s)
- Sergio de la Fuente van Bentem
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Smith JC, Figeys D. Recent developments in mass spectrometry-based quantitative phosphoproteomicsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2008; 86:137-48. [DOI: 10.1139/o08-007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is a reversible post-translational modification that is involved in virtually all eukaryotic cellular processes and has been studied in great detail in recent years. Many developments in mass spectrometry (MS)-based proteomics have been successfully applied to study protein phosphorylation in highly complicated samples. Furthermore, the emergence of a variety of enrichment strategies has allowed some of the challenges associated with low phosphorylation stoichiometry and phosphopeptide copy number to be overcome. The dynamic nature of protein phosphorylation complicates its analysis; however, a number of methods have been developed to successfully quantitate phosphorylation changes in a variety of cellular systems. The following review details some of the most recent breakthroughs in the study of protein phosphorylation, or phosphoproteomics, using MS-based approaches. The majority of the focus is placed on detailing strategies that are currently used to conduct MS-based quantitative phosphoproteomics.
Collapse
Affiliation(s)
- Jeffrey C. Smith
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Komatsu S, Jan A, Koga Y. Characterization of a histidine- and alanine-rich protein showing interaction with calreticulin in rice. Amino Acids 2008; 36:137-46. [DOI: 10.1007/s00726-008-0043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
44
|
Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 2008; 36:115-23. [DOI: 10.1007/s00726-008-0039-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
45
|
Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits. PLANT & CELL PHYSIOLOGY 2008; 49:226-41. [PMID: 18178965 DOI: 10.1093/pcp/pcm180] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
46
|
Ahn YH, Ji ES, Kwon KH, Lee JY, Cho K, Kim JY, Kang HJ, Kim HG, Yoo JS. Protein phosphorylation analysis by site-specific arginine-mimic labeling in gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2007; 370:77-86. [PMID: 17659250 DOI: 10.1016/j.ab.2007.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
Although recent advances in gel electrophoresis and mass spectrometry have greatly facilitated separation, purification, and identification of proteins, significant challenges remain in relation to phosphoprotein analysis. Here we introduce a powerful method for analysis of protein phosphorylation in which phosphorylation sites are labeled with guanidinoethanethiol (GET) by beta-elimination/Michael addition prior to proteolysis and mass spectrometry (MS) analysis. This technique is especially useful in conjunction with gel-based technology in that all of the processes involved, including GET labeling, washing, and phosphospecific enzymatic hydrolysis, can be carried out in excised gel slices, thereby minimizing sample loss and contamination. The novel GET tag, which has a highly basic guanidine group, increases the peak intensities for the GET-labeled tryptic peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In addition, phosphospecific proteolytic cleavage occurs at guanidinoethylcysteine (Gec) residue, which is arginine-mimic formed by GET tagging of phosphorylated serine residues. Thus, GET tagging is especially useful in analysis of long tryptic phosphopeptides. To illustrate the utility of the in-gel GET tagging and digestion approach, we used it to precisely analyze the phosphorylation sites of human glutathione S-transferase P1 (GSTP1), an enzyme involved in phase II metabolism of many carcinogens and anticancer drugs. The in-gel GET tagging/digestion technique significantly enhances the analytical potential of gel electrophoresis/MS in studies of proteome phosphorylation.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Instrument Development, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The advent of proteomics has made it possible to identify a broad spectrum of proteins in living systems. This capability is especially useful for crops as it may give clues not only about nutritional value, but also about yield and how these factors are affected by adverse conditions. In this review, we describe the recent progress in crop proteomics and highlight the achievements made in understanding the proteomes of major crops. The major emphasis will be on crop responses to abiotic stresses. Rigorous genetic testing of the role of possibly important proteins can be conducted. The increasing ease with the DNA, mRNA and protein levels can be conducted and connected suggests that proteomics data will not be difficult to apply to practical crop breeding.
Collapse
|
48
|
D'Ambrosio C, Salzano AM, Arena S, Renzone G, Scaloni A. Analytical methodologies for the detection and structural characterization of phosphorylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:163-80. [PMID: 16891166 DOI: 10.1016/j.jchromb.2006.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation of proteins is a frequent post-translational modification affecting a great number of fundamental cellular functions in living organisms. Because of its key role in many biological processes, much effort has been spent over the time on the development of analytical methodologies for characterizing phosphoproteins. In the past decade, mass spectrometry-based techniques have emerged as a viable alternative to more traditional methods of phosphorylation analysis, providing accurate information for a purified protein on the number of the occurring phosphate groups and their exact localization on the polypeptide sequence. This review summarizes the analytical methodologies currently available for the analysis of protein phosphorylation, emphasizing novel mass spectrometry (MS) technologies and dedicated biochemical procedures that have been recently introduced in this field. A formidable armamentarium is now available for selective enrichment, exaustive structural characterization and quantitative determination of the modification degree for phosphopeptides/phosphoproteins. These methodologies are now successfully applied to the global analysis of cellular proteome repertoire according a holistic approach, allowing the quantitative study of phosphoproteomes on a dynamic time-course basis. The enormous complexity of the protein phosphorylation pattern inside the cell and its dynamic modification will grant important challenges to future scientists, contributing significantly to deeper insights into cellular processes and cell regulation.
Collapse
Affiliation(s)
- Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | |
Collapse
|
49
|
Chitteti BR, Peng Z. Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryza sativa) Roots. J Proteome Res 2007; 6:1718-27. [PMID: 17385905 DOI: 10.1021/pr060678z] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salinity stress is a major abiotic stress that limits agriculture productivity worldwide. Rice is a model plant of monocotyledons, including cereal crops. Studies have suggested a critical role of protein phosphorylation in salt stress response in plants. However, the phosphoproteome in rice, particularly under salinity stress, has not been well studied. Here, we use Pro-Q Diamond Phosphoprotein Stain to study rice phosphoproteome differential expression under salt stress. Seventeen differentially upregulated and 11 differentially downregulated putative phosphoproteins have been identified. Further analyses indicate that 10 of the 17 upregulated proteins are probably upregulated at post-translational level instead of the protein concentration. Meanwhile, we have identified 31 salt stress differentially regulated proteins using SYPRO Ruby stain. While eight of them are known salt stress response proteins, the majority has not been reported in the literature. Our studies have provided valuable new insight into plant response to salinity stress.
Collapse
Affiliation(s)
- Brahmananda Reddy Chitteti
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mail box 9650, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
50
|
Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics 2007; 277:713-23. [PMID: 17318583 DOI: 10.1007/s00438-007-0220-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Calcium is a ubiquitous signaling molecule and changes in cytosolic calcium concentration are involved in plant responses to various stimuli. The rice calcium-dependent protein kinase 13 (CDPK13) and calreticulin interacting protein 1 (CRTintP1) have previously been reported to be involved in cold stress response in rice. In this study, rice lines transformed with sense CDPK13 or CRTintP1 constructs were produced and used to investigate the function of these proteins. When the plants were incubated at 5 degrees C for 3 days, leaf blades of both the sense transgenic and vector control rice plants became wilted and curled. When the plants were transferred back to non-stress conditions after cold treatment, the leaf blades died, but the sheaths remained green in the sense transgenic rice plants. Expression of CDPK13 or CRTintP1 was further examined in several rice varieties including cold-tolerant rice varieties. Accumulation of these proteins in the cold-tolerant rice variety was higher than that in rice varieties that are intermediate in their cold tolerance. To examine whether over-expression of CDPK13 and CRTintP1 would have any effect on the proteins or not, sense transgenic rice plants were analyzed using proteomics. The 2D-PAGE profiles of proteins from the vector control were compared with those of the sense transgenic rice plants. Two of the proteins that differed between these lines were calreticulins. The results suggest that CDPK13, calreticulin and CRTintP1 might be important signaling components for response to cold stress in rice.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba 305-8518, Japan.
| | | | | | | | | | | |
Collapse
|