1
|
Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain- and bromelain-like) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium. Folia Microbiol (Praha) 2021; 67:1-13. [PMID: 34401996 DOI: 10.1007/s12223-021-00906-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Bromelia karatas L. is a plant species from the Americas. The presence of proteases in fruits of B. karatas has been reported but scarcely studied in detail. Proteolytic enzymes from Ananas comosus have displayed antifungal and antibacterial activity. Thus, novel proteases present in B. karatas may be useful as a source of compounds against microorganisms in medicine and food production. In this work, the protein extract from the fruits of B. karatas was characterized and its antibacterial activity against Salmonella Typhimurium and Listeria monocytogenes was determined for the first time. Proteins highly similar to ananain and the fruit bromelain from A. comosus were identified as the main proteases in B. karatas fruits using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The soluble protein extract (SPE) at a concentration of 2.0 mg/mL displayed up to 80% of antibacterial activity against S. Typhimurium. Complete inhibition of L. monocytogenes was reached with up to 1.65 mg/mL of SPE. Plant protease extract containing ananain-like enzyme inhibited up to 90% against S. Typhimurium and up to 85% against L. monocytogenes using only 10 μg/mL of the partial-purified enzyme.
Collapse
|
2
|
Kotzsch A, Pawolski D, Milentyev A, Shevchenko A, Scheffel A, Poulsen N, Shevchenko A, Kröger N. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana. J Biol Chem 2016; 291:4982-97. [PMID: 26710847 PMCID: PMC4777836 DOI: 10.1074/jbc.m115.706440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.
Collapse
Affiliation(s)
| | | | - Alexander Milentyev
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Anna Shevchenko
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - André Scheffel
- the Max-Planck-Institute of Plant Physiology, 14476 Potsdam, Germany
| | | | - Andrej Shevchenko
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Nils Kröger
- From the B CUBE Center for Molecular Bioengineering and the Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01307 Dresden, Germany,
| |
Collapse
|
3
|
Li X, Jackson A, Xie M, Wu D, Tsai WC, Zhang S. Proteomic insights into floral biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1050-60. [PMID: 26945514 DOI: 10.1016/j.bbapap.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China; International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China.
| | | | - Ming Xie
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, New York 14853, USA
| |
Collapse
|
4
|
Melani RD, Araujo GD, Carvalho PC, Goto L, Nogueira FC, Junqueira M, Domont GB. Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Medzihradszky KF, Chalkley RJ. Lessons in de novo peptide sequencing by tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:43-63. [PMID: 25667941 PMCID: PMC4367481 DOI: 10.1002/mas.21406] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are "translated" into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general.
Collapse
|
6
|
On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J Pharm Biomed Anal 2014; 87:120-9. [DOI: 10.1016/j.jpba.2013.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022]
|
7
|
Abstract
BACKGROUND The identification of proteins based on analysis of tandem mass spectrometry (MS/MS) data is a valuable tool that is not fully realized because of the difficulty in carrying out automated analysis of large numbers of spectra. MS/MS spectra consist of peaks that represent each peptide fragment, usually b and y ions, with experimentally determined mass to charge ratios. Whether the strategy employed is database matching or De Novo sequencing, a major obstacle is distinguishing signal from noise. Improved ability to distinguish signal peaks of low intensity from background noise increases the likelihood of correctly identifying the peptide, as valuable information is preserved while extraneous information is not left to mislead. RESULTS This paper introduces an automated noise filtering method based on the construction of orthogonal polynomials. By subdividing the spectrum into a variable number (3 to 11) of bins, peaks that are considered "noise" are identified at a local level. Using a De Novo sequencing algorithm that we are developing, this filtering method was applied to a published dataset of more than 3000 mass spectra and an original dataset of more than 300 spectra. The samples were peptides from purified known proteins; therefore, the solutions could be compared to the correct sequences and the peaks corresponding to b, y and other fragments of significance could be identified. The same procedure was applied using two other published filtering methods. The ratios of the number of significant peaks that were preserved relative to the total number of peaks in each spectrum were determined. In the event that filtering out too many or too few signal peaks can lead to inaccuracy in sequence determination, the percentage of amino acid residues in the correct positions relative to the total number of amino acid residues in the correct sequence was also calculated for each sequence determined. CONCLUSIONS The results show that an orthogonal polynomial-based method of distinguishing signal peaks from background in mass spectra preserves a greater portion of signal peaks than compared methods, improving accuracy in sequence determination.
Collapse
Affiliation(s)
- Jason Gallia
- SUNY Binghamton Computer Science Department, Binghamton, NY, USA
| | - Katelyn Lavrich
- SUNY Binghamton Biological Sciences Department, Binghamton, NY, USA
| | - Anna Tan-Wilson
- SUNY Binghamton Biological Sciences Department, Binghamton, NY, USA
| | - Patrick H Madden
- SUNY Binghamton Computer Science Department, Binghamton, NY, USA
| |
Collapse
|
8
|
Wang DZ, Xie ZX, Zhang SF. Marine metaproteomics: current status and future directions. J Proteomics 2013; 97:27-35. [PMID: 24041543 DOI: 10.1016/j.jprot.2013.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023]
Abstract
Metaproteomics is a new field within the 'omics' science which investigates protein expression from a complex biological system and provides direct evidence of physiological and metabolic activities. Characterization of the metaproteome will enhance our understanding of the microbial world and link microbial communities to ecological functions. Recently, the availability of extensive metagenomic sequences from various marine microbial communities has extended the postgenomic era to the field of oceanography. Although still in its infancy, metaproteomics has shown its powerful potential with regard to functional gene expression within microbial habitats and their interactions with the ambient environment as well as their biogeochemical functions. However, the application of metaproteomic approaches to complex marine samples still faces considerable challenges. This review summarizes the recent progress in marine metaproteomics and discusses the limitations of and perspectives for this approach in the study of the marine ecosystem. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Champagne A, Boutry M. Proteomics of nonmodel plant species. Proteomics 2013; 13:663-73. [PMID: 23125178 DOI: 10.1002/pmic.201200312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 01/10/2023]
Abstract
Until recently, large scale proteomic investigations in the plant field have only been possible for a few model species for which the whole genome sequence had been fully determined. In contrast, for many other species with a strong economic interest as sources of human food and animal feed, as well as industrial and pharmacological molecules, little was known about their genome sequence and identifying the proteome in these species was still considered challenging. However, progress has been made as a result of several recent advances in proteomics tools, e.g. in MS technology and data search programs, and the increasing availability of genomic and cDNA sequences from various species. Moreover, next-generation sequencing technologies now make it possible to rapidly determine, at a reasonable cost, the genome or RNA sequence of species not currently considered as models, thus considerably expanding the plant sequence databases. This review will show how these advances make it possible to identify a large set of proteins, even for species for which few sequences are currently available.
Collapse
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-15, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
10
|
Silva AJD, Gómez-Mendoza DP, Junqueira M, Domont GB, Ximenes Ferreira Filho E, de Sousa MV, Ricart CAO. Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics 2012; 12:2729-38. [DOI: 10.1002/pmic.201200048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adelson Joel da Silva
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Diana Paola Gómez-Mendoza
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Magno Junqueira
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | | | | | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| |
Collapse
|
11
|
Pereira-Medrano AG, Margesin R, Wright PC. Proteome characterization of the unsequenced psychrophile Pedobacter cryoconitis using 15N metabolic labeling, tandem mass spectrometry, and a new bioinformatic workflow. Proteomics 2012; 12:775-89. [PMID: 22539428 DOI: 10.1002/pmic.201100159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organisms without a sequenced genome and lacking a complete protein database encounter an added level of complexity to protein identification and quantitation. De novo sequencing, new bioinformatics tools, and mass spectrometry (MS) techniques allow for advances in this area. Here, the proteomic characterization of an unsequenced psychrophilic bacterium, Pedobacter cryoconitis, is presented employing a novel workflow based on (15) N metabolic labelling, 2DE, MS/MS, and bioinformatics tools. Two bioinformatics pipelines, based on nitrogen constraint (N-constraint), ortholog searching, and de novo peptide sequencing with N-constraint similarity database search, are compared based on proteome coverage and throughput. Results demonstrate the effect of different growth temperatures (1°C, 20°C) and different carbon sources (glucose, maltose) on the proteome. Seventy-six and 69 proteins were identified and validated from the glucose- and maltose-grown bacterium, respectively, from which 21 and 22 were differentially expressed at different growth temperatures. Differentially expressed proteins are involved in stress response and carbohydrate metabolism, with higher expression at 20°C than at 1°C, while antioxidants were upregulated at 1°C. This study provides an alternative workflow to identify, validate, and quantify proteins from unsequenced organisms distantly related to other species in the protein database. Furthermore, it provides further understanding on bacterial adaptation mechanisms to cold environments, and a comparative proteomic analyses with other psychrophilic microorganisms.
Collapse
Affiliation(s)
- Ana G Pereira-Medrano
- Biological and Environmental Systems Group, The ChELSI Institute, Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, UK
| | | | | |
Collapse
|
12
|
Renard BY, Xu B, Kirchner M, Zickmann F, Winter D, Korten S, Brattig NW, Tzur A, Hamprecht FA, Steen H. Overcoming species boundaries in peptide identification with Bayesian information criterion-driven error-tolerant peptide search (BICEPS). Mol Cell Proteomics 2012; 11:M111.014167. [PMID: 22493179 PMCID: PMC3394943 DOI: 10.1074/mcp.m111.014167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis.
Collapse
Affiliation(s)
- Bernhard Y Renard
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin 13353, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Homology-Driven Proteomics of Dinoflagellates with Unsequenced Genomes Using MALDI-TOF/TOF and Automated De Novo Sequencing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:471020. [PMID: 21977052 PMCID: PMC3184443 DOI: 10.1155/2011/471020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/30/2011] [Indexed: 11/18/2022]
Abstract
This study developed a multilayered, gel-based, and underivatized strategy for de novo protein sequence analysis of unsequenced dinoflagellates using a MALDI-TOF/TOF mass spectrometer with the assistance of DeNovo Explorer software. MASCOT was applied as the first layer screen to identify either known or unknown proteins sharing identical peptides presented in a database. Once the confident identifications were removed after searching against the NCBInr database, the remainder was searched against the dinoflagellate expressed sequence tag database. In the last layer, those borderline and nonconfident hits were further subjected to de novo interpretation using DeNovo Explorer software. The de novo sequences passing a reliability filter were subsequently submitted to nonredundant MS-BLAST search. Using this layer identification method, 216 protein spots representing 158 unique proteins out of 220 selected protein spots from Alexandrium tamarense, a dinoflagellate with unsequenced genome, were confidently or tentatively identified by database searching. These proteins were involved in various intracellular physiological activities. This study is the first effort to develop a completely automated approach to identify proteins from unsequenced dinoflagellate databases and establishes a preliminary protein database for various physiological studies of dinoflagellates in the future.
Collapse
|
14
|
Carrasco MA, Buechler SA, Arnold RJ, Sformo T, Barnes BM, Duman JG. Elucidating the Biochemical Overwintering Adaptations of Larval Cucujus clavipes puniceus, a Nonmodel Organism, via High Throughput Proteomics. J Proteome Res 2011; 10:4634-46. [DOI: 10.1021/pr200518y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin A. Carrasco
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Steven A. Buechler
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Randy J. Arnold
- Proteomics Facility, Indiana University, Indianapolis, Indiana, United States
| | - Todd Sformo
- University of Alaska, Fairbanks, Alaska, United States
| | - Brian M. Barnes
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, United States
| | - John G. Duman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Betancourt LH, Sánchez A, Pérez Y, Fernandez de Cossio J, Gil J, Toledo P, Iguchi S, Aimoto S, González LJ, Padrón G, Takao T, Besada V. Charge state-selective separation of peptides by reversible modification of amino groups and strong cation-exchange chromatography: Evaluation in proteomic studies using peptide-centric database searches. J Proteomics 2011; 74:2210-3. [DOI: 10.1016/j.jprot.2011.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
16
|
Tessier D, Yclon P, Jacquemin I, Larré C, Rogniaux H. OVNIp: an open source application facilitating the interpretation, the validation and the edition of proteomics data generated by MS analyses and de novo sequencing. Proteomics 2010; 10:1794-801. [PMID: 20198638 DOI: 10.1002/pmic.200800783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several academic software are available to help the validation and reporting of proteomics data generated by MS analyses. However, to our knowledge, none of them have been conceived to meet the particular needs generated by the study of organisms whose genomes are not sequenced. In that context, we have developed OVNIp, an open-source application which facilitates the whole process of proteomics results interpretation. One of its unique attributes is its capacity to compile multiple results (from several search engines and/or several databank searches) with a resolution of conflicting interpretations. Moreover, OVNIp enables automated exploitation of de novo sequences generated from unassigned MS/MS spectra leading to higher sequence coverage and enhancing confidence in the identified proteins. The exploitation of these additional spectra might also identify novel proteins through a MS-BLAST search, which can be easily ran from the OVNIp interface. Beyond this primary scope, OVNIp can also benefit to users who look for a simple standalone application to both visualize and confirm MS/MS result interpretations through a simple graphical interface and generate reports according to user-defined forms which may integrate the prerequisites for publication. Sources, documentation and a stable release for Windows are available at http://wwwappli.nantes.inra.fr:8180/OVNIp.
Collapse
Affiliation(s)
- Dominique Tessier
- INRA, UR 1268 Biopolymères, Interactions, Assemblages, Nantes, France.
| | | | | | | | | |
Collapse
|
17
|
Simon ES, Papoulias PG, Andrews PC. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1624-1632. [PMID: 20471281 PMCID: PMC2927711 DOI: 10.1016/j.jasms.2010.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 05/29/2023]
Abstract
The fragmentation characteristics of peptides derivatized at the side-chain epsilon-amino group of lysyl residues via reductive amination with benzaldehyde have been examined using collision-induced dissociation (CID) tandem mass spectrometry. The resulting MS/MS spectra exhibit peaks representing product ions formed from two independent fragmentation pathways. One pathway results in backbone fragmentation and commonly observed sequence ion peaks. The other pathway corresponds to the unsymmetrical, heterolytic cleavage of the C(zeta)-N(epsilon) bond that links the benzyl derivative to the side-chain lysyl residue. This results in the elimination of the derivative as a benzylic or tropylium carbocation and a (n - 1)(+)-charged peptide product (where n is the precursor ion charge state). The frequency of occurrence of the elimination pathway increases with increasing charge of the precursor ion. For the benzyl-modified tryptic peptides analyzed in this study, peaks representing products from both of these pathways are observed in the MS/MS spectra of doubly-charged precursor ions, but the carbocation elimination pathway occurs almost exclusively for triply-charged precursor ions. The experimental evidence presented herein, combined with molecular orbital calculations, suggests that the elimination pathway is a charge-directed reaction contingent upon protonation of the secondary epsilon-amino group of the benzyl-derivatized lysyl side chain. If the secondary epsilon-amine is protonated, the elimination of the carbocation is observed. If the precursor is not protonated at the secondary epsilon-amine, backbone fragmentation persists. The application of appropriately substituted benzyl analogs may allow for selective control over the relative abundance of product ions generated from the two pathways.
Collapse
Affiliation(s)
- Eric S Simon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
18
|
Benndorf D, Vogt C, Jehmlich N, Schmidt Y, Thomas H, Woffendin G, Shevchenko A, Richnow HH, von Bergen M. Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation 2009; 20:737-50. [PMID: 19381451 PMCID: PMC2847156 DOI: 10.1007/s10532-009-9261-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/01/2009] [Indexed: 11/23/2022]
Abstract
BTEX compounds such as benzene are frequent soil and groundwater contaminants that are easily biodegraded under oxic conditions by bacteria. In contrast, benzene is rather recalcitrant under anaerobic conditions. The analysis of anoxic degradation is often hampered by difficult sampling conditions, limited amounts of biomass and interference of matrix compounds with proteomic approaches. In order to improve the procedure for protein extraction we established a scheme consisting of the following steps: dissociation of cells from lava granules, cell lysis by ultrasonication and purification of proteins by phenol extraction. The 2D-gels revealed a resolution of about 240 proteins spots and the spot patterns showed strong matrix dependence, but still differences were detectable between the metaproteomes obtained after growth on benzene and benzoate. Using direct data base search as well as de novo sequencing approaches we were able to identify several proteins. An enoyl-CoA hydratase with cross species homology to Azoarcus evansii, is known to be involved in the anoxic degradation of xenobiotics. Thereby the identification confirmed that this procedure has the capacity to analyse the metaproteome of an anoxic living microbial community.
Collapse
Affiliation(s)
- Dirk Benndorf
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Yvonne Schmidt
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Henrik Thomas
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Gary Woffendin
- Thermo Fisher, Stafford House, Boundary Way, Hemel Hempstead, HP2 7GE UK
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Metabolomics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Salmi J, Nyman TA, Nevalainen OS, Aittokallio T. Filtering strategies for improving protein identification in high-throughput MS/MS studies. Proteomics 2009; 9:848-60. [PMID: 19160393 DOI: 10.1002/pmic.200800517] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the recent advances in streamlining high-throughput proteomic pipelines using tandem mass spectrometry (MS/MS), reliable identification of peptides and proteins on a larger scale has remained a challenging task, still involving a considerable degree of user interaction. Recently, a number of papers have proposed computational strategies both for distinguishing poor MS/MS spectra prior to database search (pre-filtering) as well as for verifying the peptide identifications made by the search programs (post-filtering). Both of these filtering approaches can be very beneficial to the overall protein identification pipeline, since they can remove a substantial part of the time consuming manual validation work and convert large sets of MS/MS spectra into more reliable and interpretable proteome information. The choice of the filtering method depends both on the properties of the data and on the goals of the experiment. This review discusses the different pre- and post-filtering strategies available to the researchers, together with their relative merits and potential pitfalls. We also highlight some additional research topics, such as spectral denoising and statistical assessment of the identification results, which aim at further improving the coverage and accuracy of high-throughput protein identification studies.
Collapse
Affiliation(s)
- Jussi Salmi
- Department of Information Technology, University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
20
|
Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J Proteomics 2009; 72:337-52. [PMID: 19367732 DOI: 10.1016/j.jprot.2009.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Araucaria angustifolia is the only native conifer of economic importance in the Brazilian Atlantic Rainforest. Due to a clear-cutting form of exploitation this species has received the status of vulnerable. The aim of this work was to investigate and characterize changes in protein expression profile during seed development of this endangered species. For this, the proteome of developing seeds was characterized by 2-DE and LC-MS/MS. Ninety six proteins were confidently identified and classified according to their biological function and expression profile. Overaccumulated proteins in early seed development indicated a higher control on oxidative stress metabolism during this phase. In contrast, highly expressed proteins in late stages revealed an active metabolism, leading to carbon assimilation and storage compounds accumulation. Comprehensive protein expression profiles and identification of overaccumulated proteins provide new insights into the process of embryogenesis in this recalcitrant species. Considerations on the improvement and control of somatic embryogenesis through medium manipulation and protein markers screening using data generated are also discussed.
Collapse
|
21
|
Shevchenko A, Valcu CM, Junqueira M. Tools for exploring the proteomosphere. J Proteomics 2009; 72:137-44. [PMID: 19167528 DOI: 10.1016/j.jprot.2009.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
Abstract
Homology-driven proteomics aims at exploring the proteomes of organisms with unsequenced genomes that, despite rapid genomic sequencing progress, still represent the overwhelming majority of species in the biosphere. Methodologies have been developed to enable automated LC-MS/MS identifications of unknown proteins, which rely on the sequence similarity between the fragmented peptides and reference database sequences from phylogenetically related species. However, because full sequences of matched proteins are not available and matching specificity is reduced, estimating protein abundances should become the obligatory element of homology-driven proteomics pipelines to circumvent the interpretation bias towards proteins from evolutionary conserved families.
Collapse
Affiliation(s)
- Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | |
Collapse
|
22
|
Abstract
Along with unequivocal hits produced by matching multiple MS/MS spectra to database sequences, LC-MS/MS analysis often yields a large number of hits of borderline statistical confidence. To simplify their validation, we propose to use rapid de novo interpretation of all acquired MS/MS spectra and, with the help of a simple software tool, display the candidate sequences together with each database search hit. We demonstrate that comparing hit database sequences and independent de novo interpretations of the same MS/MS spectra assists in rapid examination of ambiguous matches.
Collapse
Affiliation(s)
- Henrik Thomas
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
23
|
Cheng Y, Xie Y, Zheng J, Wu Z, Chen Z, Ma X, Li B, Lin Z. Identification and characterization of the chromium (VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325. J Environ Sci (China) 2009; 21:1673-1678. [PMID: 20131597 DOI: 10.1016/s1001-0742(08)62472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A Gram-negative, chromium(VI) tolerant and reductive strain CTS-325, isolated from a Chinese chromate plant, was identified as Ochrobactrum anthropi based on its biochemical properties and 16S rDNA sequence analysis. It was able to tolerate up to 10 mmol/L Cr(VI) and completely reduce 1 mmol/L Cr(VI) to Cr(III) within 48 h. When the strain CTS-325 was induced with Cr(VI), a protein increased significantly in the whole cell proteins. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed that this protein was a superoxide dismutase (SOD) homology. The measured superoxide dismutase activity was 2694 U/mg after three steps of purification. The SOD catalyzes the dismutation of the superoxide anion (O2*-) into hydrogen peroxide and molecular oxygen. This protein is considered to be one of the most important anti-oxidative enzymes for O. anthropi as it allows the bacterium to survive high oxygen stress environments, such as the environment produced during the reduction process of Cr(VI).
Collapse
Affiliation(s)
- Yangjian Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou 350002, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Junqueira M, Spirin V, Balbuena TS, Thomas H, Adzhubei I, Sunyaev S, Shevchenko A. Protein identification pipeline for the homology-driven proteomics. J Proteomics 2008; 71:346-56. [PMID: 18639657 DOI: 10.1016/j.jprot.2008.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
Abstract
Homology-driven proteomics is a major tool to characterize proteomes of organisms with unsequenced genomes. This paper addresses practical aspects of automated homology-driven protein identifications by LC-MS/MS on a hybrid LTQ Orbitrap mass spectrometer. All essential software elements supporting the presented pipeline are either hosted at the publicly accessible web server, or are available for free download.
Collapse
Affiliation(s)
- Magno Junqueira
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Junqueira M, Spirin V, Santana Balbuena T, Waridel P, Surendranath V, Kryukov G, Adzhubei I, Thomas H, Sunyaev S, Shevchenko A. Separating the wheat from the chaff: unbiased filtering of background tandem mass spectra improves protein identification. J Proteome Res 2008; 7:3382-95. [PMID: 18558732 DOI: 10.1021/pr800140v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins.
Collapse
Affiliation(s)
- Magno Junqueira
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
DiMaggio PA, Floudas CA, Lu B, Yates JR. A hybrid method for peptide identification using integer linear optimization, local database search, and quadrupole time-of-flight or OrbiTrap tandem mass spectrometry. J Proteome Res 2008; 7:1584-93. [PMID: 18324765 DOI: 10.1021/pr700577z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel hybrid methodology for the automated identification of peptides via de novo integer linear optimization, local database search, and tandem mass spectrometry is presented in this article. A modified version of the de novo identification algorithm PILOT, is utilized to construct accurate de novo peptide sequences. A modified version of the local database search tool FASTA is used to query these de novo predictions against the nonredundant protein database to resolve any low-confidence amino acids in the candidate sequences. The computational burden associated with performing several alignments is alleviated with the use of distributive computing. Extensive computational studies are presented for this new hybrid methodology, as well as comparisons with MASCOT for a set of 38 quadrupole time-of-flight (QTOF) and 380 OrbiTrap tandem mass spectra. The results for our proposed hybrid method for the OrbiTrap spectra are also compared with a modified version of PepNovo, which was trained for use on high-precision tandem mass spectra, and the tag-based method InsPecT. The de novo sequences of PILOT and PepNovo are also searched against the nonredundant protein database using CIDentify to compare with the alignments achieved by our modifications of FASTA. The comparative studies demonstrate the excellent peptide identification accuracy gained from combining the strengths of our de novo method, which is based on integer linear optimization, and database driven search methods.
Collapse
Affiliation(s)
- Peter A DiMaggio
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | | | | | | |
Collapse
|
27
|
Shi Y, Elmets CA, Smith JW, Liu YT, Chen YR, Huang CP, Zhu W, Ananthaswamy HN, Gallo RL, Huang CM. Quantitative proteomes and in vivo secretomes of progressive and regressive UV-induced fibrosarcoma tumor cells: mimicking tumor microenvironment using a dermis-based cell-trapped system linked to tissue chamber. Proteomics 2008; 7:4589-600. [PMID: 18022937 DOI: 10.1002/pmic.200700425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alterations of tumor proteome and/or in vivo secretome created by host-tumor cell interaction may be crucial factors for tumors to undergo progression or regression in a host system. Two UV-induced fibrosarcoma tumor cell lines (UV-2237 progressive cells and UV-2240 regressive cells) were used as models to address this issue. Hundreds of proteins including in vivo secretome have been identified and quantified via an isotope-coded protein label (ICPL) in conjunction with high-throughput NanoLC-LTQ MS analysis. A newly designed technology using a dermis-based cell-trapped system was employed to encapsulate and grow 3-D tumor cells. A tissue chamber inserted with a tumor cell-trapped dermis was implanted into mice to mimic the tumor microenvironment. The in vivo secretome created by host-tumor interaction was characterized from samples collected from tissue chamber fluids via ICPL labeling mass spectrometric analysis. Twenty-five proteins including 14-3-3 proteins, heat shock proteins, profilin-1, and a fragment of complement C3 with differential expression in proteomes of UV-2237 and UV-2240 cells were revealed. Three secreted proteins including myeloperoxidase, alpha-2-macroglobulin, and a vitamin D-binding protein have different abundances in the in vivo secretome in response to UV-2237 and UV-2240 cells. Differential tumor proteomes and in vivo secretome were thus accentuated as potential therapeutic targets to control tumor growth.
Collapse
Affiliation(s)
- Yang Shi
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2007; 1:2856-60. [PMID: 17406544 DOI: 10.1038/nprot.2006.468] [Citation(s) in RCA: 3728] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In-gel digestion of proteins isolated by gel electrophoresis is a cornerstone of mass spectrometry (MS)-driven proteomics. The 10-year-old recipe by Shevchenko et al. has been optimized to increase the speed and sensitivity of analysis. The protocol is for the in-gel digestion of both silver and Coomassie-stained protein spots or bands and can be followed by MALDI-MS or LC-MS/MS analysis to identify proteins at sensitivities better than a few femtomoles of protein starting material.
Collapse
Affiliation(s)
- Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
29
|
Waridel P, Frank A, Thomas H, Surendranath V, Sunyaev S, Pevzner P, Shevchenko A. Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing. Proteomics 2007; 7:2318-29. [PMID: 17623296 DOI: 10.1002/pmic.200700003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing, stringent, and sequence-similarity database searching tools, was employed in a layered manner to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches (MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database) proteins, or unknown proteins sharing identical peptides with related database sequences. Once the confidently matched spectra were removed, the remainder was filtered against a nonannotated library of background spectra that cleaned up the dataset from spectra of common protein and chemical contaminants. The rectified spectral dataset was further subjected to rapid batch de novo interpretation by PepNovo software, followed by the MS BLAST sequence-similarity search that used multiple redundant and partially accurate candidate peptide sequences. Importantly, a single dataset was acquired at the uncompromised sensitivity with no need of manual selection of MS/MS spectra for subsequent de novo interpretation. This approach enabled a completely automated identification of novel proteins that were, otherwise, missed by conventional database searches.
Collapse
Affiliation(s)
- Patrice Waridel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Mikhail E. Belov
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Navdeep Jaitly
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
31
|
Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev 2007; 107:3568-84. [PMID: 17645314 DOI: 10.1021/cr068213f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gert Lubec
- Medical University of Vienna, Department of Pediatrics, Waehringer Guertel 18, A-1090 Vienna, Austria.
| | | |
Collapse
|
32
|
Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 2007; 6:1459-72. [PMID: 17569891 DOI: 10.1074/mcp.m700002-mcp200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analysis of the plasma membrane. Plasma membrane proteins were recognized by tagging intact cells with a membrane-impermeable biotin derivative. Proteins were resolved by two-dimensional blue native/SDS-PAGE and identified by nano-LC-MS/MS. Of 55 identified proteins, about 60% were integral membrane or membrane-associated proteins. We identified novel surface coat proteins, lipid-metabolizing enzymes, a new family of membrane proteins of unknown function, ion transporters, small GTP-binding proteins, and heat shock proteins. The abundance of 20 protein spots increased and that of two protein spots decreased under high salt. The major salt-regulated proteins were implicated in protein and membrane structure stabilization and within signal transduction pathways. The migration profiles of native protein complexes on blue native gels revealed oligomerization or co-migration of major surface-exposed proteins, which may indicate mechanisms of stabilization at high salinity.
Collapse
Affiliation(s)
- Adriana Katz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
33
|
Antoshechkin I, Sternberg PW. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 2007; 8:518-32. [PMID: 17549065 DOI: 10.1038/nrg2105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since its establishment as a model organism, Caenorhabditis elegans has been an invaluable tool for biological research. An immense spectrum of questions can be addressed using this small nematode, making it one of the most versatile and exciting model organisms. Although the many tools and resources developed by the C. elegans community greatly facilitate new discoveries, they can also overwhelm newcomers to the field. This Review aims to familiarize new worm researchers with the main resources, and help them to select the tools that are best suited for their needs. We also hope that it will be helpful in identifying new research opportunities and will promote the development of additional resources.
Collapse
Affiliation(s)
- Igor Antoshechkin
- Division of Biology 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | |
Collapse
|
34
|
Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Ataxia-telangiectasia Mutated (ATM)-dependent Activation of ATR Occurs through Phosphorylation of TopBP1 by ATM. J Biol Chem 2007; 282:17501-6. [PMID: 17446169 DOI: 10.1074/jbc.m701770200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.
Collapse
Affiliation(s)
- Hae Yong Yoo
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
35
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:547-558. [PMID: 17385794 DOI: 10.1002/jms.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|