1
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
2
|
Varano M, Gaspari M, Quirino A, Cuda G, Liberto MC, Focà A. Temperature-dependent regulation of the Ochrobactrum anthropi proteome. Proteomics 2017; 16:3019-3024. [PMID: 27753207 DOI: 10.1002/pmic.201600048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 02/05/2023]
Abstract
Ochrobactrum anthropi is a Gram-negative rod belonging to the Brucellaceae family, able to colonize a variety of environments, and actually reported as a human opportunistic pathogen. Despite its low virulence, the bacterium causes a growing number of hospital-acquired infections mainly, but not exclusively, in immunocompromised patients. The aim of this study was to obtain an overview of the global proteome changes occurring in O. anthropi in response to different growth temperatures, in order to achieve a major understanding of the mechanisms by which the bacterium adapts to different habitats and to identify some potential virulence factors. Combined quantitative mass spectrometry-based proteomics and bioinformatics approaches were carried out on two O. anthropi strains grown at temperatures miming soil/plants habitat (25°C) and human host environment (37°C), respectively. Proteomic analysis led to the identification of over 150 differentially expressed proteins in both strains, out of over 1200 total protein identifications. Among them, proteins responsible for heat shock response (DnaK, GrpE), motility (FliC, FlgG, FlgE), and putative virulence factors (TolB) were identified. The study represents the first quantitative proteomic analysis of O. anthropi performed by high-resolution quantitative mass spectrometry.
Collapse
Affiliation(s)
- Mariaconcetta Varano
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Angela Quirino
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Carla Liberto
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alfredo Focà
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. J Microbiol 2015; 53:279-87. [PMID: 25845541 DOI: 10.1007/s12275-015-5021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
Affiliation(s)
- Nigel G. Ternan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Shailesh Jain
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Robert L. J. Graham
- School of Medicine, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
5
|
Proteomic analysis of Bacillus thuringiensis at different growth phases by using an automated online two-dimensional liquid chromatography-tandem mass spectrometry strategy. Appl Environ Microbiol 2012; 78:5270-9. [PMID: 22636013 DOI: 10.1128/aem.00424-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The proteome of a new Bacillus thuringiensis subsp. kurstaki strain, 4.0718, from the middle vegetative (T(1)), early sporulation (T(2)), and late sporulation (T(3)) phases was analyzed using an integrated liquid chromatography (LC)-based protein identification system. The system comprised two-dimensional (2D) LC coupled with nanoscale electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. After deletion of redundant proteins from the different batches and B. thuringiensis subspecies, 918, 703, and 778 proteins were identified in the respective three phases. Their molecular masses ranged from 4.6 Da to 477.4 Da, and their isoelectric points ranged from 4.01 to 11.84. Function clustering revealed that most of the proteins in the three phases were functional metabolic proteins, followed by proteins participating in cell processes. Small molecular and macromolecular metabolic proteins were further classified according to the Kyoto Encyclopedia of Genes and Genome and BioCyc metabolic pathway database. Three protoxins (Cry2Aa, Cry1Aa, and Cry1Ac) as well as a series of potential intracellular active factors were detected. Many significant proteins related to spore and crystal formation, including sporulation proteins, help proteins, chaperones, and so on, were identified. The expression patterns of two identified proteins, CotJc and glutamine synthetase, were validated by Western blot analysis, which further confirmed the MS results. This study is the first to use shotgun technology to research the proteome of B. thuringiensis. Valuable experimental data are provided regarding the methodology of analyzing the B. thuringiensis proteome (which can be used to produce insecticidal crystal proteins) and have been added to the related protein database.
Collapse
|
6
|
Proteomics analyses of the opportunistic pathogen Burkholderia vietnamiensis using protein fractionations and mass spectrometry. J Biomed Biotechnol 2011; 2011:701928. [PMID: 22187530 PMCID: PMC3237022 DOI: 10.1155/2011/701928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/27/2011] [Accepted: 08/27/2011] [Indexed: 01/14/2023] Open
Abstract
The main objectives of this work were to obtain a more extensive coverage of the Burkholderia vietnamiensis proteome than previously reported and to identify virulence factors using tandem mass spectrometry. The proteome of B. vietnamiensis was precipitated into four fractions to as extracellular, intracellular, cell surface and cell wall proteins. Two different approaches were used to analyze the proteins. The first was a gel-based method where 1D SDS-PAGE was used for separation of the proteins prior to reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS). The second method used MudPIT analysis (Multi dimensional Protein Identification Technique), where proteins are digested and separated using cation exchange and reversed phase separations before the MS/MS analysis (LC/LC-MS/MS). Overall, gel-based LC-MS/MS analysis resulted in more protein identifications than the MudPIT analysis. Combination of the results lead to identification of more than 1200 proteins, approximately 16% of the proteins coded from the annotated genome of Burkholderia species. Several virulence factors were detected including flagellin, porin, peroxiredoxin and zinc proteases.
Collapse
|
7
|
Identification and localization of Myxococcus xanthus porins and lipoproteins. PLoS One 2011; 6:e27475. [PMID: 22132103 PMCID: PMC3222651 DOI: 10.1371/journal.pone.0027475] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine processing site.
Collapse
|
8
|
Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E. Proteomic analysis of Medicago truncatula root plastids. Proteomics 2010; 10:2123-37. [DOI: 10.1002/pmic.200900345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography–Fourier transform mass spectrometry. J Chromatogr A 2010; 1217:285-93. [DOI: 10.1016/j.chroma.2009.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/26/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022]
|
10
|
Graham RLJ, Sharma MK, Ternan NG, Weatherly DB, Tarleton RL, McMullan G. A semi-quantitative GeLC-MS analysis of temporal proteome expression in the emerging nosocomial pathogen Ochrobactrum anthropi. Genome Biol 2008; 8:R110. [PMID: 17567905 PMCID: PMC2394761 DOI: 10.1186/gb-2007-8-6-r110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/10/2007] [Accepted: 06/13/2007] [Indexed: 11/10/2022] Open
Abstract
A semi-quantitative gel-based analysis identifies distinct proteomic profiles associated with specific growth points for the nosocomial pathogen Ochrobactrum anthropi. Background The α-Proteobacteria are capable of interaction with eukaryotic cells, with some members, such as Ochrobactrum anthropi, capable of acting as human pathogens. O. anthropi has been the cause of a growing number of hospital-acquired infections; however, little is known about its growth, physiology and metabolism. We used proteomics to investigate how protein expression of this organism changes with time during growth. Results This first gel-based liquid chromatography-mass spectrometry (GeLC-MS) temporal proteomic analysis of O. anthropi led to the positive identification of 131 proteins. These were functionally classified and physiochemically characterized. Utilizing the emPAI protocol to estimate protein abundance, we assigned molar concentrations to all proteins, and thus were able to identify 19 with significant changes in their expression. Pathway reconstruction led to the identification of a variety of central metabolic pathways, including nucleotide biosynthesis, fatty acid anabolism, glycolysis, TCA cycle and amino acid metabolism. In late phase growth we identified a number of gene products under the control of the oxyR regulon, which is induced in response to oxidative stress and whose protein products have been linked with pathogen survival in response to host immunity reactions. Conclusion This study identified distinct proteomic profiles associated with specific growth points for O. anthropi, while the use of emPAI allowed semi-quantitative analyses of protein expression. It was possible to reconstruct central metabolic pathways and infer unique functional and adaptive processes associated with specific growth phases, thereby resulting in a deeper understanding of the physiology and metabolism of this emerging pathogenic bacterium.
Collapse
Affiliation(s)
| | - Mohit K Sharma
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry BT52 1SA, UK
| | - Nigel G Ternan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry BT52 1SA, UK
| | - D Brent Weatherly
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30605, USA
| | - Rick L Tarleton
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30605, USA
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry BT52 1SA, UK
| |
Collapse
|
11
|
Graham RLJ, Graham C, McMullan G. Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 2007; 6:26. [PMID: 17697372 PMCID: PMC1971468 DOI: 10.1186/1475-2859-6-26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022] Open
Abstract
It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level.In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS) and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.
Collapse
Affiliation(s)
- Robert LJ Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Ciaren Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| |
Collapse
|