1
|
Hassani II, Quadri I, Yadav A, Bouchard S, Raoult D, Hacène H, Desnues C. Assessment of diversity of archaeal communities in Algerian chott. Extremophiles 2023; 27:2. [PMID: 36469177 DOI: 10.1007/s00792-022-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 103 CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.
Collapse
Affiliation(s)
- Imene Ikram Hassani
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria.
| | - Inès Quadri
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria
| | - Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sonia Bouchard
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Didier Raoult
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Hocine Hacène
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria
| | - Christelle Desnues
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| |
Collapse
|
2
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Cerletti M, Giménez MI, Tröetschel C, D' Alessandro C, Poetsch A, De Castro RE, Paggi RA. Proteomic Study of the Exponential-Stationary Growth Phase Transition in the Haloarchaea Natrialba magadii and Haloferax volcanii. Proteomics 2018; 18:e1800116. [PMID: 29888524 DOI: 10.1002/pmic.201800116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 11/12/2022]
Abstract
The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - María Ines Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | | | - Celeste D' Alessandro
- Laboratório de Patologia e Controle Microbiano de Insetos, ESALQ-USP, Piracicaba-SP, 13418-900, Brazil
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Rosana Ester De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| |
Collapse
|
4
|
Kumar D, Mondal AK, Kutum R, Dash D. Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Proteomics 2015; 16:226-40. [PMID: 26773550 DOI: 10.1002/pmic.201500263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Sustainable innovations in sequencing technologies have resulted in a torrent of microbial genome sequencing projects. However, the prokaryotic genomes sequenced so far are unequally distributed along their phylogenetic tree; few phyla contain the majority, the rest only a few representatives. Accurate genome annotation lags far behind genome sequencing. While automated computational prediction, aided by comparative genomics, remains a popular choice for genome annotation, substantial fraction of these annotations are erroneous. Proteogenomics utilizes protein level experimental observations to annotate protein coding genes on a genome wide scale. Benefits of proteogenomics include discovery and correction of gene annotations regardless of their phylogenetic conservation. This not only allows detection of common, conserved proteins but also the discovery of protein products of rare genes that may be horizontally transferred or taxonomy specific. Chances of encountering such genes are more in rare phyla that comprise a small number of complete genome sequences. We collated all bacterial and archaeal proteogenomic studies carried out to date and reviewed them in the context of genome sequencing projects. Here, we present a comprehensive list of microbial proteogenomic studies, their taxonomic distribution, and also urge for targeted proteogenomics of underexplored taxa to build an extensive reference of protein coding genes.
Collapse
Affiliation(s)
- Dhirendra Kumar
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Anupam Kumar Mondal
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Rintu Kutum
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Debasis Dash
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| |
Collapse
|
5
|
Feng J, Wang J, Zhang Y, Du X, Xu Z, Wu Y, Tang W, Li M, Tang B, Tang XF. Proteomic analysis of the secretome of haloarchaeon Natrinema sp. J7-2. J Proteome Res 2014; 13:1248-58. [PMID: 24512091 DOI: 10.1021/pr400728x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although in silico predictions have revealed that haloarchaea can be distinguished from other organisms in that the Tat pathway is used more extensively than the Sec pathway for haloarchaeal protein secretion, only a few haloarchaeal-secreted proteins have been experimentally confirmed. Here, the culture supernatant and membrane fraction of the haloarchaeon Natrinema sp. J7-2 grown at 23% salt concentration were subjected to RPLC-ESI-MS/MS analysis. In total, 46 predicted Tat substrates, 14 predicted Sec substrates, and 3 class III signal peptide-bearing proteins were detected. Approximately 65% of the detected Tat substrates contain lipoboxes, emphasizing the role of the Tat pathway in haloarchaeal lipoprotein secretion. Most of the detected Tat substrates are extracellular substrate (solute)-binding proteins and redox proteins. Despite the small number of Sec substrates, two of them, a cell surface glycoprotein and a putative lipoprotein carrier protein, were identified to be high-abundance secreted proteins. While limited proteins were detected in the culture supernatant, most of the secreted proteins were found in the membrane fraction. The anchoring of secreted proteins to the cell surface via a lipobox or a PGF-CTERM seems to be an adaptation strategy of haloarchaea to handle the harsh extracellular environment. Additionally, ∼15% of the integral membrane proteins (IMPs) detected in the membrane fraction possess putative Sec signal peptides or signal anchors, implying that the Sec pathway is important for membrane insertion of IMPs. This is the first report to describe the experimental secretome of haloarchaea and provide new information for better understanding of haloarchaeal protein secretion patterns.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu H, Luo Y, Han J, Wu J, Wu Z, Feng D, Cai S, Li M, Liu J, Zhou J, Xiang H. Proteome Reference Map of Haloarcula hispanica and Comparative Proteomic and Transcriptomic Analysis of Polyhydroxyalkanoate Biosynthesis under Genetic and Environmental Perturbations. J Proteome Res 2013; 12:1300-15. [PMID: 23301558 DOI: 10.1021/pr300969m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hailong Liu
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yuanming Luo
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jing Han
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jinhua Wu
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Zhenfang Wu
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Deqin Feng
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Shuangfeng Cai
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ming Li
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jingfang Liu
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jian Zhou
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Hua Xiang
- State Key
Laboratory of Microbial Resources, Institute
of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
7
|
Siddaramappa S, Challacombe JF, DeCastro RE, Pfeiffer F, Sastre DE, Giménez MI, Paggi RA, Detter JC, Davenport KW, Goodwin LA, Kyrpides N, Tapia R, Pitluck S, Lucas S, Woyke T, Maupin-Furlow JA. A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics 2012; 13:165. [PMID: 22559199 PMCID: PMC3403918 DOI: 10.1186/1471-2164-13-165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. RESULTS The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. CONCLUSIONS Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes.
Collapse
Affiliation(s)
| | - Jean F Challacombe
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Rosana E DeCastro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Diego E Sastre
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250 4to Nivel, Mar del Plata, 7600, Argentina
| | - John C Detter
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lynne A Goodwin
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Samuel Pitluck
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., P.O. Box 110700, Gainesville, FL, 32611-0700, USA
| |
Collapse
|
8
|
Maupin-Furlow JA, Humbard MA, Kirkland PA. Extreme challenges and advances in archaeal proteomics. Curr Opin Microbiol 2012; 15:351-6. [PMID: 22386447 DOI: 10.1016/j.mib.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/06/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions. Coupling traditional genetic and biochemical approaches with advanced technologies, such as genomics and proteomics, provides an avenue for scientists to discover new aspects related to the molecular physiology of archaea. This review emphasizes the unusual properties of archaeal proteomes and how high-throughput and specialized mass spectrometry-based proteomic studies have provided insight into the molecular properties of archaeal cells.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Wang X, Han Z, Bai Z, Tang J, Ma A, He J, Zhuang G. Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. J Environ Sci (China) 2011; 23:1858-1864. [PMID: 22432311 DOI: 10.1016/s1001-0742(10)60640-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The response of archaeal communities to petroleum contamination in saline-alkali soil was characterized by analyses of three soil samples with different total petroleum hydrocarbon concentrations. Through the construction and screening of 16S rRNA gene clone libraries based on DNA extracts from these soils, nine distinct phylogenetic groups were identified. Statistical analyses showed that the distribution of archaeal community structures differ significantly along the gradient of petroleum contamination in these three saline-alkali soils. Five phylogenetic groups were dominant in the control soil, two of which were also abundant in the lightly contaminated soil. Four phylogenetic groups were dominant in heavily contaminated soil, one of which was also abundant in the lightly contaminated soil. The halophilic genus of Haloferax and the haloalkaliphilic genus of Natronomonas were more abundant in heavily contaminated soil. These results suggested that the genera of Haloferax and Natronomonas may have a role in the natural attenuation of petroleum-contaminated saline-alkali soil.
Collapse
Affiliation(s)
- Xinxin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
McDonald GD, Storrie-Lombardi MC. Biochemical constraints in a protobiotic earth devoid of basic amino acids: the "BAA(-) world". ASTROBIOLOGY 2010; 10:989-1000. [PMID: 21162678 DOI: 10.1089/ast.2010.0484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.
Collapse
Affiliation(s)
- Gene D McDonald
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
12
|
Alatyrev AG, Pyatibratov MG, Kawarabayasi Y, Tsujimura M, Galeva AV, Fedorov OV. Identification of the new protein participating in the archaea motility regulation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810010162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Armengaud J. Proteogenomics and systems biology: quest for the ultimate missing parts. Expert Rev Proteomics 2010; 7:65-77. [DOI: 10.1586/epr.09.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
14
|
Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome Sci 2009; 7:45. [PMID: 20025764 PMCID: PMC2804596 DOI: 10.1186/1477-5956-7-45] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022] Open
Abstract
Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP). Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.
Collapse
|
15
|
Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol 2009; 10:R70. [PMID: 19558674 PMCID: PMC2718504 DOI: 10.1186/gb-2009-10-6-r70] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/26/2009] [Indexed: 11/15/2022] Open
Abstract
The genome sequence of Thermococcus gammatolerans, a radioresistant archaeon, is described; a proteomic analysis reveals that radioresistance may be due to unknown DNA repair enzymes. Background Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. Results T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. Conclusions This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.
Collapse
Affiliation(s)
- Yvan Zivanovic
- Laboratoire de Génomique des Archae, Université Paris-Sud 11, CNRS, UMR8621, Bât400 F-91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Armengaud J. A perfect genome annotation is within reach with the proteomics and genomics alliance. Curr Opin Microbiol 2009; 12:292-300. [PMID: 19410500 DOI: 10.1016/j.mib.2009.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 11/17/2022]
Abstract
High-throughput identification of proteins and their accurate partial sequencing by shotgun nanoLC-MS/MS are now feasible for any cellular model at a full genomic scale. Proteogenomics is the integration of these data with the genome. Mining microbial proteomes allows validation of predicted orphan genes and correction of genome annotation errors such as discovery of unannotated genes, reversal of reading frames and identification of translational start sites, stop codon read-throughs or programmed frameshifts. Recent advances have been achieved in database searches, N-terminal oriented proteomics and homology-driven proteogenomics. From now on, proteogenomics on newly sequenced model genomes can be carried out at the earliest stage of the genome project as already exemplified by Mycoplasma mobile and Deinococcus deserti genomes. The proteomics and genomics alliance produces almost complete and accurate gene catalogues for small microbial genomes, a comprehensiveness which is essential for efficient systems biology.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France.
| |
Collapse
|
17
|
Kirkland PA, Humbard MA, Daniels CJ, Maupin-Furlow JA. Shotgun proteomics of the haloarchaeon Haloferax volcanii. J Proteome Res 2008; 7:5033-9. [PMID: 18816081 DOI: 10.1021/pr800517a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haloferax volcanii, an extreme halophile originally isolated from the Dead Sea, is used worldwide as a model organism for furthering our understanding of archaeal cell physiology. In this study, a combination of approaches was used to identify a total of 1296 proteins, representing 32% of the theoretical proteome of this haloarchaeon. This included separation of (phospho)proteins/peptides by 2-dimensional gel electrophoresis (2-D), immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and Multidimensional Protein Identification Technology (MudPIT) including strong cation exchange (SCX) chromatography coupled with reversed phase (RP) HPLC. Proteins were identified by tandem mass spectrometry (MS/MS) using nanoelectrospray ionization hybrid quadrupole time-of-flight (QSTAR XL Hybrid LC/MS/MS System) and quadrupole ion trap (Thermo LCQ Deca). Results indicate that a SCX RP HPLC fractionation coupled with MS/MS provides the best high-throughput workflow for overall protein identification.
Collapse
Affiliation(s)
- P Aaron Kirkland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
18
|
Cao Y, Liao L, Xu XW, Oren A, Wu M. Aldehyde dehydrogenase of the haloalkaliphilic archaeon Natronomonas pharaonis and its function in ethanol metabolism. Extremophiles 2008; 12:849-54. [PMID: 18769868 DOI: 10.1007/s00792-008-0187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
The genome of Natronomonas pharaonis encodes genes annotated as alcohol dehydrogenase (ADH; EC 1.1.1.1) and aldehyde dehydrogenase (ALDH; EC 1.2.1.3), enzymes involved in alcohol metabolism. These genes (adh and aldH2) occur in a single copy on the chromosome. We have studied the role of these genes in ethanol metabolism in N. pharaonis. Reverse transcription-PCR analysis showed that the aldH2 gene was inducible by ethanol, but the adh gene was transcribed both in the presence and absence of ethanol. The gene encoding for ALDH of N. pharaonis (NpALDH) was cloned into a pET41a vector containing a glutathione S-transferase tag, expressed in Escherichia coli and purified by glutathione sepharose affinity chromatography. The GST-NpALDH fusion protein was cleaved by bovine enterokinase and the target enzyme showed a molecular mass of approximately 60 kDa by SDS-PAGE. The enzyme was thermophilic and alkaliphilic, the optimal temperature and pH being 60 degrees C and 8.0, respectively. NpALDH was salt independent, being most active at 0.25 M NaCl or KCl.
Collapse
Affiliation(s)
- Yi Cao
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Pfeiffer F, Broicher A, Gillich T, Klee K, Mejía J, Rampp M, Oesterhelt D. Genome information management and integrated data analysis with HaloLex. Arch Microbiol 2008; 190:281-99. [PMID: 18592220 PMCID: PMC2516542 DOI: 10.1007/s00203-008-0389-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 05/08/2008] [Indexed: 11/30/2022]
Abstract
HaloLex is a software system for the central management, integration, curation, and web-based visualization of genomic and other -omics data for any given microorganism. The system has been employed for the manual curation of three haloarchaeal genomes, namely Halobacterium salinarum (strain R1), Natronomonas pharaonis, and Haloquadratum walsbyi. HaloLex, in particular, enables the integrated analysis of genome-wide proteomic results with the underlying genomic data. This has proven indispensable to generate reliable gene predictions for GC-rich genomes, which, due to their characteristically low abundance of stop codons, are known to be hard targets for standard gene finders, especially concerning start codon assignment. The proteomic identification of more than 600 N-terminal peptides has greatly increased the reliability of the start codon assignment for Halobacterium salinarum. Application of homology-based methods to the published genome of Haloarcula marismortui allowed to detect 47 previously unidentified genes (a problem that is particularly serious for short protein sequences) and to correct more than 300 start codon misassignments.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
21
|
Indicators from archaeal secretomes. Microbiol Res 2008; 165:1-10. [PMID: 18407482 DOI: 10.1016/j.micres.2008.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/14/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022]
Abstract
Just as in the Eukarya and the Bacteria, members of the Archaea need to export proteins beyond the cell membrane. This would be required to fulfill a variety of essential functions such as nutrient acquisition and biotransformations, maintenance of extracellular structures and more. Apart from the Eukarya and the Bacteria however, members of the Archaea share a number of unique characteristics. Does this uniqueness extend to the protein secretion system? It was the objective of this study to answer this question. To overcome the limited experimental information on secreted proteins in Archaea, this study was carried out by subjecting the available archaeal genomes, which represent halophiles, thermophiles, and extreme thermophiles, to bioinformatics analysis. Specifically, to examine the properties of the secretomes of the Archaea using the ExProt program. A total of 24 genomes were analyzed. Secretomes were found to fall in the range of 6% of total ORFs (Methanopyrus kandleri) to 19% (Halobacterium sp. NRC-1). Methanosarcina acetivorans has the highest fraction of lipoproteins (at 89) and the lowest (at 1) were members of the Thermoplasma, Pyrobaculum aerophilum, and Nanoarchaeum equitans. Based on the Tat consensus sequence, contribution of these secreted proteins to the secretomes were negligible, making up 8 proteins out of a total of 7105 predicted exported proteins. Amino acid composition, an attribute of signal peptides not used as a selection criteria by ExProt, of predicted archaeal signal peptides show that in the haloarchaea secretomes, the frequency of the amino acid Lys is much lower than that seen in bacterial signal peptides, but is compensated for by a higher frequency of Arg. It also showed that higher frequencies for Thr, Val, and Gly contribute to the hydrophobic character in haloarchaeal signal peptides, unlike bacterial signal peptides in which the hydrophobic character is dominated by Leu and Ile.
Collapse
|
22
|
Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 2008; 91:335-46. [PMID: 18313895 DOI: 10.1016/j.ygeno.2008.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/12/2007] [Accepted: 01/02/2008] [Indexed: 01/23/2023]
Abstract
We report the sequence of the Halobacterium salinarum strain R1 chromosome and its four megaplasmids. Our set of protein-coding genes is supported by extensive proteomic and sequence homology data. The structures of the plasmids, which show three large-scale duplications (adding up to 100 kb), were unequivocally confirmed by cosmid analysis. The chromosome of strain R1 is completely colinear and virtually identical to that of strain NRC-1. Correlation of the plasmid sequences revealed 210 kb of sequence that occurs only in strain R1. The remaining 350 kb shows virtual sequence identity in the two strains. Nevertheless, the number and overall structure of the plasmids are largely incompatible. Also, 20% of the protein sequences differ despite the near identity at the DNA sequence level. Finally, we report genome-wide mobility data for insertion sequences from which we conclude that strains R1 and NRC-1 originate from the same natural isolate. This exemplifies evolution in the laboratory.
Collapse
|
23
|
Cao Y, Liao L, Xu XW, Oren A, Wang C, Zhu XF, Wu M. Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles 2008; 12:471-6. [PMID: 18189118 DOI: 10.1007/s00792-007-0133-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 12/02/2007] [Indexed: 11/28/2022]
Abstract
Alcohol dehydrogenase (ADH; EC: 1.1.1.1) is a key enzyme in production and utilization of ethanol. In this study, the gene encoding for ADH of the haloalkaliphilic archaeon Natronomonas pharaonis (NpADH), which has a 1,068-bp open reading frame that encodes a protein of 355 amino acids, was cloned into the pET28b vector and was expressed in Escherichia coli. Then, NpADH was purified by Ni-NTA affinity chromatography. The recombinant enzyme showed a molecular mass of 41.3 kDa by SDS-PAGE. The enzyme was haloalkaliphilic and thermophilic, being most active at 5 M NaCl or 4 M KCl and 70 degrees C, respectively. The optimal pH was 9.0. Zn2+ significantly inhibited activity. The Km value for acetaldehyde was higher than that for ethanol. It was concluded that the physiological role of this enzyme is likely the catalysis of the oxidation of ethanol to acetaldehyde.
Collapse
Affiliation(s)
- Yi Cao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Aivaliotis M, Gevaert K, Falb M, Tebbe A, Konstantinidis K, Bisle B, Klein C, Martens L, Staes A, Timmerman E, Van Damme J, Siedler F, Pfeiffer F, Vandekerckhove J, Oesterhelt D. Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. J Proteome Res 2007; 6:2195-204. [PMID: 17444671 DOI: 10.1021/pr0700347] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Characterization of protein N-terminal peptides supports the quality assessment of data derived from genomic sequences (e.g., the correct assignment of start codons) and hints to in vivo N-terminal modifications such as N-terminal acetylation and removal of the initiator methionine. The current work represents the first large-scale identification of N-terminal peptides from prokaryotes, of the two halophilic euryarchaeota Halobacterium salinarum and Natronomonas pharaonis. Two methods were used that specifically allow the characterization of protein N-terminal peptides: combined fractional diagonal chromatography (COFRADIC) and strong cation exchange chromatography (SCX), both known to enrich for N-terminally blocked peptides. In addition to these specific methods, N-terminal peptide identifications were extracted from our previous genome-wide proteomic data. Combining all data, 606 N-terminal peptides from Hbt. salinarum and 328 from Nmn. pharaonis were reliably identified. These results constitute the largest available dataset holding identified and characterized protein N-termini for prokaryotes (archaea and bacteria). They allowed the validation/improvement of start codon assignments as automatic gene finders tend to misassign start codons for GC-rich genomes. In addition, the dataset allowed unravelling N-terminal protein maturation in archaea, showing that 60% of the proteins undergo methionine cleavage and that-in contrast to current knowledge-Nalpha-acetylation is common in the archaeal domain of life with 13-18% of the proteins being Nalpha-acetylated. The protein sets described in this paper are available by FTP and might be used as reference sets to test the performance of new gene finders.
Collapse
Affiliation(s)
- Michalis Aivaliotis
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|