1
|
Joyce AW, Searle BC. Computational approaches to identify sites of phosphorylation. Proteomics 2024; 24:e2300088. [PMID: 37897210 DOI: 10.1002/pmic.202300088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Collapse
Affiliation(s)
- Alex W Joyce
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Daly LA, Clarke CJ, Po A, Oswald SO, Eyers CE. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem Commun (Camb) 2023; 59:11484-11499. [PMID: 37681662 PMCID: PMC10521633 DOI: 10.1039/d3cc02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Post-translational modifications (PTMs) are ubiquitous and key to regulating protein function. Understanding the dynamics of individual PTMs and their biological roles requires robust characterisation. Mass spectrometry (MS) is the method of choice for the identification and quantification of protein modifications. This article focusses on the MS-based analysis of those covalent modifications that induce a mass shift of +80 Da, notably phosphorylation and sulfation, given the challenges associated with their discrimination and pinpointing the sites of modification on a polypeptide chain. Phosphorylation in particular is highly abundant, dynamic and can occur on numerous residues to invoke specific functions, hence robust characterisation is crucial to understanding biological relevance. Showcasing our work in the context of other developments in the field, we highlight approaches for enrichment and site localisation of phosphorylated (canonical and non-canonical) and sulfated peptides, as well as modification analysis in the context of intact proteins (top down proteomics) to explore combinatorial roles. Finally, we discuss the application of native ion-mobility MS to explore the effect of these PTMs on protein structure and ligand binding.
Collapse
Affiliation(s)
- Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Allen Po
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Sally O Oswald
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
3
|
Kleinenkuhnen N, Büchel F, Gerlich SC, Kopriva S, Metzger S. A Novel Method for Identification and Quantification of Sulfated Flavonoids in Plants by Neutral Loss Scan Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:885. [PMID: 31333712 PMCID: PMC6625178 DOI: 10.3389/fpls.2019.00885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/21/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is present in plants in a large range of essential primary metabolites, as well as in numerous natural products. Many of these secondary metabolites contain sulfur in the oxidized form of organic sulfate. However, except of glucosinolates, very little is known about other classes of such sulfated metabolites, mainly because of lack of specific and quantitative analytical methods. We developed an LC-MS method to analyze sulfated flavonoids, a group of sulfated secondary metabolites prominent, e.g., in plants of the genus Flaveria. The method uses a linear gradient of methanol/formic acid in water on a Restek Raptor C18 Core-Shell column for separation of the compounds. The sulfated flavonoids are detected by mass spectrometry (MS) in a negative mode, using a neutral loss of 80 Da after a collision induced dissociation. With this method we were also able to quantify the sulfated flavonoids. We could detect all (mono)sulfated flavonoids described before in Flaveria plus a number of new ones, such as isorhamnetin-sulfate-glycoside. In addition, we showed that sulfated flavonoids represent a substantial sulfur pool in Flaveria, larger than the thiols glutathione and cysteine. The individual species possess different sulfated flavonoids, but there is no correlation between the qualitative pattern and type of photosynthesis. Similar to other sulfur-containing secondary compounds, the concentration of sulfated flavonoids in leaves is reduced by sulfur starvation. The new LC-MS method will enable qualitative and quantitative detection of these secondary metabolites in plants as a pre-requisite to addressing their functions.
Collapse
Affiliation(s)
- Niklas Kleinenkuhnen
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Felix Büchel
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Silke C. Gerlich
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sabine Metzger
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
May DH, Tamura K, Noble WS. Detecting Modifications in Proteomics Experiments with Param-Medic. J Proteome Res 2019; 18:1902-1906. [PMID: 30714740 DOI: 10.1021/acs.jproteome.8b00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Searching tandem mass spectra against a peptide database requires accurate knowledge of various experimental parameters, including machine settings and details of the sample preparation protocol. In some cases, such as in reanalysis of public data sets, this experimental metadata may be missing or inaccurate. We describe a method for automatically inferring the presence of various types of modifications, including stable-isotope and isobaric labeling and tandem mass tags as well as the enrichment of phosphorylated peptides, directly from a given set of mass spectra. We demonstrate the sensitivity and specificity of the proposed approach, and we provide open-source Python and C++ implementations in a new version of the software tool Param-Medic.
Collapse
Affiliation(s)
- Damon H May
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - Kaipo Tamura
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - William S Noble
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States.,Paul G. Allen School of Computer Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
5
|
Aslebagh R, Wormwood KL, Channaveerappa D, Wetie AGN, Woods AG, Darie CC. Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:199-224. [DOI: 10.1007/978-3-030-15950-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Ngounou Wetie AG, Sokolowska I, Channaveerappa D, Dupree EJ, Jayathirtha M, Woods AG, Darie CC. Proteomics and Non-proteomics Approaches to Study Stable and Transient Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:121-142. [DOI: 10.1007/978-3-030-15950-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Elucidating the various multi-phosphorylation statuses of protein functional regions by 193-nm ultraviolet photodissociation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Everley RA, Huttlin EL, Erickson AR, Beausoleil SA, Gygi SP. Neutral Loss Is a Very Common Occurrence in Phosphotyrosine-Containing Peptides Labeled with Isobaric Tags. J Proteome Res 2016; 16:1069-1076. [PMID: 27978624 DOI: 10.1021/acs.jproteome.6b00487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While developing a multiplexed phosphotyrosine peptide quantification assay, an unexpected observation was made: significant neutral loss from phosphotyrosine (pY) containing peptides. Using a 2000-member peptide library, we sought to systematically investigate this observation by comparing unlabeled peptides with the two highest-plex isobaric tags (iTRAQ8 and TMT10) across CID, HCD, and ETD fragmentation using high resolution high mass accuracy Orbitrap instrumentation. We found pY peptide neutral loss behavior was consistent with reduced proton mobility, and does not occur during ETD. The site of protonation at the peptide N-terminus changes from a primary to a tertiary amine as a result of TMT labeling which would increase the gas phase basicity and reduce proton mobility at this site. This change in fragmentation behavior has implications during instrument method development and interpretation of MS/MS spectra, and therefore ensuing follow-up studies. We show how sites not localized to tyrosine by search and site localization algorithms can be confidently reassigned to tyrosine using neutral loss and phosphotyrosine immonium ions. We believe these findings will be of general interest to those studying pY signal transduction using isobaric tags.
Collapse
Affiliation(s)
- Robert A Everley
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States.,Laboratory of Systems Pharmacology, Harvard Medical School , Boston, Massachusetts 02115 United States
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Alison R Erickson
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Sean A Beausoleil
- Cell Signaling Technology, Inc. , Danvers, Massachusetts 01923, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Chan CYX, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics 2016; 13:421-33. [PMID: 26960075 DOI: 10.1586/14789450.2016.1164604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.
Collapse
Affiliation(s)
- Chi Yuet X'avia Chan
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Marina A Gritsenko
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Richard D Smith
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
10
|
Angeleri M, Muth-Pawlak D, Aro EM, Battchikova N. Study of O-Phosphorylation Sites in Proteins Involved in Photosynthesis-Related Processes in Synechocystis sp. Strain PCC 6803: Application of the SRM Approach. J Proteome Res 2016; 15:4638-4652. [DOI: 10.1021/acs.jproteome.6b00732] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martina Angeleri
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Dorota Muth-Pawlak
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Molecular Plant Biology,
Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
11
|
Hernandez-Hernandez O, Quintanilla-Lopez JE, Lebron-Aguilar R, Sanz ML, Moreno FJ. Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. J Chromatogr A 2016; 1428:202-11. [DOI: 10.1016/j.chroma.2015.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/08/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
|
12
|
Ma C, Qu J, Meisner J, Zhao X, Li X, Wu Z, Zhu H, Yu Z, Li L, Guo Y, Song J, Wang PG. Convenient and Precise Strategy for Mapping N-Glycosylation Sites Using Microwave-Assisted Acid Hydrolysis and Characteristic Ions Recognition. Anal Chem 2015; 87:7833-9. [PMID: 26161579 DOI: 10.1021/acs.analchem.5b02177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N-glycosylation is one of the most prevalence protein post-translational modifications (PTM) which is involved in several biological processes. Alternation of N-glycosylation is associated with cellular malfunction and development of disease. Thus, investigation of protein N-glycosylation is crucial for diagnosis and treatment of disease. Currently, deglycosylation with peptide N-glycosidase F is the most commonly used technique in N-glycosylation analysis. Additionally, a common error in N-glycosylation site identification, resulting from protein chemical deamidation, has largely been ignored. In this study, we developed a convenient and precise approach for mapping N-glycosylation sites utilizing with optimized TFA hydrolysis, ZIC-HILIC enrichment, and characteristic ions of N-acetylglucosamine (GlcNAc) from higher-energy collisional dissociation (HCD) fragmentation. Using this method, we identified a total of 257 N-glycosylation sites and 144 N-glycoproteins from healthy human serum. Compared to deglycosylation with endoglycosidase, this strategy is more convenient and efficient for large scale N-glycosylation sites identification and provides an important alternative approach for the study of N-glycoprotein function.
Collapse
Affiliation(s)
| | - Jingyao Qu
- §National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | | | - Xinyuan Zhao
- ‡National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | | | | | | | | | | | | | | | - Peng George Wang
- §National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
13
|
Brown R, Stuart SA, Houel S, Ahn NG, Old WM. Large-Scale Examination of Factors Influencing Phosphopeptide Neutral Loss during Collision Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1128-42. [PMID: 25851653 PMCID: PMC4509682 DOI: 10.1007/s13361-015-1109-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 05/14/2023]
Abstract
Collision-induced dissociation (CID) remains the predominant mass spectrometry-based method for identifying phosphorylation sites in complex mixtures. Unfortunately, the gas-phase reactivity of phosphoester bonds results in MS/MS spectra dominated by phosphoric acid (H3PO4) neutral loss events, suppressing informative peptide backbone cleavages. To understand the major drivers of H3PO4 neutral loss, we performed robust nonparametric statistical analysis of local and distal sequence effects on the magnitude and variability of neutral loss, using a collection of over 35,000 unique phosphopeptide MS/MS spectra. In contrast to peptide amide dissociation pathways, which are strongly influenced by adjacent amino acid side chains, we find that neutral loss of H3PO4 is affected by both proximal and distal sites, most notably basic residues and the peptide N-terminal primary amine. Previous studies have suggested that protonated basic residues catalyze neutral loss through direct interactions with the phosphate. In contrast, we find that nearby basic groups decrease neutral loss regardless of mobility class, an effect only seen by stratifying spectra by charge-mobility. The most inhibitory bases are those immediately N-terminal to the phosphate, presumably because of steric hindrances in catalyzing neutral loss. Further evidence of steric effects is shown by the presence of proline, which can dramatically reduce the presence of neutral loss when between the phosphate and a possible charge donor. In mobile proton spectra, the N-terminus is the strongest predictor of high neutral loss, with proximity to the N-terminus essential for peptides to exhibit the highest levels of neutral loss.
Collapse
Affiliation(s)
- Robert Brown
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Scott A. Stuart
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | | | - Natalie G. Ahn
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309
| | - William M. Old
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
- Corresponding author: William M. Old, Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, Phone: 303-492-5519, Fax: 303-492-2439,
| |
Collapse
|
14
|
Large-scale label-free phosphoproteomics: from technology to data interpretation. Bioanalysis 2015; 6:2403-20. [PMID: 25384593 DOI: 10.4155/bio.14.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein phosphorylation plays a central role in the dynamic intracellular signaling and the control of biochemical pathways in all living cells. Recent advances in high-performance MS/MS-based technology make the large-scale identification and quantification of phosphorylation sites possible. Here, we review the full data generation pipeline, starting from sample preparation methods and LC-MS detection procedures, through to data processing and analysis software tools that facilitate the systematic comparative profiling of thousands of phosphoproteins in different biological specimens in a single experiment. We emphasize current challenges and promising avenues for the mechanistic interpretation and visualization of global phosphorylation networks and their relevance to human health and disease.
Collapse
|
15
|
Ma C, Zhang Q, Qu J, Zhao X, Li X, Liu Y, Wang PG. A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. J Proteomics 2014; 114:61-70. [PMID: 25220145 DOI: 10.1016/j.jprot.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/03/2023]
Abstract
UNLABELLED The core fucosylation (CF) of N-glycoproteins plays important roles in regulating protein functions during biological development, and it has also been shown to be up-regulated in several high metastasis cancer cell lines. Therefore, global profiling and quantitative characterization of CF-glycoproteins may reveal potent biomarkers for clinical applications. However, due to the complex fragmentation pattern of CF-glycopeptides, accurately identifying CF-glycosylation sites via mass spectrometry with high throughput remains a formidable challenge. In this study, we established a precise CF-glycosylation site identification strategy with UHPLC LTQ-Orbitrap Elite under low- and high-normalized collision energy (LHNCE) conditions. To demonstrate the feasibility of LHNCE, the CF-glycopeptides of target proteins in clinical plasma samples were applied and compared as a preliminary demonstration and resulted in the assignment of 357 unique CF-glycosylation sites from 209 CF-glycoproteins. In this study, the largest human plasma CF-glycosylation site database was constructed, and at least three-fold more CF-sites were identified compared to previously published studies. The results further demonstrated that LHNCE provides an important approach for CF-glycoprotein function studies and biomarker screening in cancer research. BIOLOGICAL SIGNIFICANCE Core-fucosylation (CF) is a kind of N-linked glycosylation in which an α1,6-linked fucose is added to the innermost N-acetylglucosamine (GlcNAc) residue. It has been proved that core-fucosylation is involved in regulating biological processes in mammals. Abnormal core-fucosylation has been demonstrated in human pathological processes, such as metastasis. For example, the CF-glycosylation of an α-fetoprotein isoform (AFP-L3) was approved as a biomarker of hepatocellular carcinoma (HCC). In addition, GP73 is also a well-known biomarker and its CF-glycosylation level will increase in liver cancer patients. Therefore, it is crucial to develop a strategy for mapping human CF-glycosylation.
Collapse
Affiliation(s)
- Cheng Ma
- Center for Diagnostics & Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Qi Zhang
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Hessen 35043, Germany
| | - Jingyao Qu
- Center for Diagnostics & Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; National Glycoengineering Research Center, The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xinyuan Zhao
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Xu Li
- Center for Diagnostics & Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Yunpeng Liu
- Center for Diagnostics & Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; National Glycoengineering Research Center, The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng George Wang
- Center for Diagnostics & Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; National Glycoengineering Research Center, The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
16
|
Lanucara F, Chi Hoo Lee D, Eyers CE. Unblocking the sink: improved CID-based analysis of phosphorylated peptides by enzymatic removal of the basic C-terminal residue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:214-25. [PMID: 24297471 PMCID: PMC3899453 DOI: 10.1007/s13361-013-0770-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.
Collapse
Affiliation(s)
- Francesco Lanucara
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Dave Chi Hoo Lee
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
| | - Claire E. Eyers
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
17
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Mass Spectrometric Analysis of Post-translational Modifications (PTMs) and Protein–Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:205-35. [DOI: 10.1007/978-3-319-06068-2_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Engholm-Keller K, Larsen MR. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013; 13:910-31. [PMID: 23404676 DOI: 10.1002/pmic.201200484] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/18/2013] [Accepted: 01/31/2013] [Indexed: 12/23/2022]
Abstract
Phosphorylation, the reversible addition of a phosphate group to amino acid side chains of proteins, is a fundamental regulator of protein activity, stability, and molecular interactions. Most cellular processes, such as inter- and intracellular signaling, protein synthesis, degradation, and apoptosis, rely on phosphorylation. This PTM is thus involved in many diseases, rendering localization and assessment of extent of phosphorylation of major scientific interest. MS-based phosphoproteomics, which aims at describing all phosphorylation sites in a specific type of cell, tissue, or organism, has become the main technique for discovery and characterization of phosphoproteins in a nonhypothesis driven fashion. In this review, we describe methods for state-of-the-art MS-based analysis of protein phosphorylation as well as the strategies employed in large-scale phosphoproteomic experiments with focus on the various challenges and limitations this field currently faces.
Collapse
Affiliation(s)
- Kasper Engholm-Keller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
Weiling H, Xiaowen Y, Chunmei L, Jianping X. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 2013. [DOI: 10.1016/j.cellsig.2012.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
22
|
|
23
|
Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 2012; 12:1002-5. [DOI: 10.1002/pmic.201100065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | - Endre Laczko
- Functional Genomics Center; UNI ETH Zürich; Zürich; Switzerland
| |
Collapse
|
24
|
Hernández-Hernández O, Lebrón-Aguilar R, Quintanilla-López JE, Sanz ML, Moreno FJ. Detection of two minor phosphorylation sites for bovine κ-casein macropeptide by reversed-phase liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10848-10853. [PMID: 21910405 DOI: 10.1021/jf203089n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work addresses the characterization of phosphopeptides in bovine κ-casein macropeptide by reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (RPLC-ESI-MS(2)). Two different mass spectrometers, equipped with an ion trap (IT) or a quadrupole time-of-flight (Q-TOF) analyzer, were used to perform an accurate phosphorylation site assignment. A total of 8 phosphopeptides from 26 identified peptides were characterized. MS(2) spectra of phosphopeptides were dominated by the neutral loss of a phosphoric acid molecule (H(3)PO(4)) and sufficient informative fragment ions resulting from peptide backbone cleavages enabling the elucidation of the phosphopeptide sequence. A higher number of sequence informative b and y ions were detected using a Q-TOF instead of an IT analyzer. In addition to the well-established phosphorylation sites at Ser(149) and Ser(127), this study also revealed the presence of two minor phosphorylation sites at Thr(145) and Ser(166). These findings indicate that RPLC-ESI-MS(2) on a Q-TOF analyzer is a useful technique for identifying low-abundance phosphorylation sites in caseins.
Collapse
Affiliation(s)
- Oswaldo Hernández-Hernández
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Anal Bioanal Chem 2011; 402:249-60. [DOI: 10.1007/s00216-011-5469-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/20/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
26
|
Ghelis T. Signal processing by protein tyrosine phosphorylation in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:942-51. [PMID: 21628997 PMCID: PMC3257767 DOI: 10.4161/psb.6.7.15261] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/05/2023]
Abstract
Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology.
Collapse
Affiliation(s)
- Thanos Ghelis
- UPMC Université Paris 06, Sorbonne Universités, UR5 EAC 7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France.
| |
Collapse
|
27
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
28
|
Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B. Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics 2010; 10:M110.003830. [PMID: 21057138 DOI: 10.1074/mcp.m110.003830] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Large scale phosphorylation analysis is more and more getting into focus of proteomic research. Although it is now possible to identify thousands of phosphorylated peptides in a biological system, confident site localization remains challenging. Here we validate the Mascot Delta Score (MD-score) as a simple method that achieves similar sensitivity and specificity for phosphosite localization as the published Ascore, which is mainly used in conjunction with Sequest. The MD-score was evaluated using liquid chromatography-tandem MS data of 180 individually synthesized phosphopeptides with precisely known phosphorylation sites. We tested the MD-score for a wide range of commonly available fragmentation methods and found it to be applicable throughout with high statistical significance. However, the different fragmentation techniques differ strongly in their ability to localize phosphorylation sites. At 1% false localization rate, the highest number of correctly assigned phosphopeptides was achieved by higher energy collision induced dissociation in combination with an Orbitrap mass analyzer followed very closely by low resolution ion trap spectra obtained after electron transfer dissociation. Both these methods are significantly better than low resolution spectra acquired after collision induced dissociation and multi stage activation. Score thresholds determined from simple calibration functions for each fragmentation method were stable over replicate analyses of the phosphopeptide set. The MD-score outperforms the Ascore for tyrosine phosphorylated peptides and we further show that the ability to call sites correctly increases with increasing distance of two candidate sites within a peptide sequence. The MD-score does not require complex computational steps which makes it attractive in terms of practical utility. We provide all mass spectra and the synthetic peptides to the community so that the development of present and future localization software can be benchmarked and any laboratory can determine MD-scores and localization probabilities for their individual analytical set up.
Collapse
|
29
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
30
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rampitsch C, Subramaniam R, Djuric-Ciganovic S, Bykova NV. The phosphoproteome of Fusarium graminearum
at the onset of nitrogen starvation. Proteomics 2009; 10:124-40. [DOI: 10.1002/pmic.200800399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Feng J, Garrett WM, Naiman DQ, Cooper B. Correlation of Multiple Peptide Mass Spectra for Phosphoprotein Identification. J Proteome Res 2009; 8:5396-405. [DOI: 10.1021/pr900596u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jian Feng
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, and Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705
| | - Wesley M. Garrett
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, and Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705
| | - Daniel Q. Naiman
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, and Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705
| | - Bret Cooper
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, Maryland 21218, Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, and Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705
| |
Collapse
|
33
|
Boersema PJ, Mohammed S, Heck AJR. Phosphopeptide fragmentation and analysis by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:861-878. [PMID: 19504542 DOI: 10.1002/jms.1599] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision-induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss-dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS(3) and multistage activation (MSA), have been designed to generate more sequence-informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron-driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large-scale phosphoproteomics studies.
Collapse
Affiliation(s)
- Paul J Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Liu J, Erassov A, Halina P, Canete M, Nguyen DV, Chung C, Cagney G, Ignatchenko A, Fong V, Emili A. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications. Anal Chem 2008; 80:7846-54. [PMID: 18788753 DOI: 10.1021/ac8009017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tandem mass spectrometry is the prevailing approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. Effective database search engines have been developed to identify peptide sequences from MS/MS fragmentation spectra. Since proteins are polymorphic and subject to post-translational modifications (PTM), however, computational methods for detecting unanticipated variants are also needed to achieve true proteome-wide coverage. Different from existing "unrestrictive" search tools, we present a novel algorithm, termed SIMS (for Sequential Motif Interval Search), that interprets pairs of product ion peaks, representing potential amino acid residues or "intervals", as a means of mapping PTMs or substitutions in a blind database search mode. An effective heuristic software program was likewise developed to evaluate, rank, and filter optimal combinations of relevant intervals to identify candidate sequences, and any associated PTM or polymorphism, from large collections of MS/MS spectra. The prediction performance of SIMS was benchmarked extensively against annotated reference spectral data sets and compared favorably with, and was complementary to, current state-of-the-art methods. An exhaustive discovery screen using SIMS also revealed thousands of previously overlooked putative PTMs in a compendium of yeast protein complexes and in a proteome-wide map of adult mouse cardiomyocytes. We demonstrate that SIMS, freely accessible for academic research use, addresses gaps in current proteomic data interpretation pipelines, improving overall detection coverage, and facilitating comprehensive investigations of the fundamental multiplicity of the expressed proteome.
Collapse
Affiliation(s)
- Jian Liu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shi Y, Bajrami B, Morton M, Yao X. Cyclophosphoramidate Ion as Mass Defect Marker for Efficient Detection of Protein Serine Phosphorylation. Anal Chem 2008; 80:7614-23. [DOI: 10.1021/ac801355u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Shi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Bekim Bajrami
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Martha Morton
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
36
|
Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J Sep Sci 2008; 31:1948-63. [PMID: 18491358 DOI: 10.1002/jssc.200800100] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review briefly depicts several salient points of the current status of knowledge on salivary peptidoma. It outlines the intrinsic difficulties in its characterization connected to different factors of variability, such as: i) the high genetic polymorphisms, complicated by individual insertions/deletions and alternative splicing; ii) complex post-translational maturations comprehending different proteolytic cleavages, glycosylation, phosphorylation and sulfation processes; iii) physiological variations and different contributions to the whole. Moreover, several technological and analytical problems and pitfalls that had to be surmounted during our studies focussed on the extensive qualitative and quantitative characterization of salivary peptidoma and mainly based on LC-MS analyses of intact naturally occurring peptides are here described. The hope is that the information provided might be helpful to other groups engaged on the analysis of saliva or other body fluids for clinical applications.
Collapse
Affiliation(s)
- Irene Messana
- Department of Sciences Applied to Biosystems, Cagliari University, Cagliari, Italy
| | | | | | | | | |
Collapse
|
37
|
Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach. Anal Bioanal Chem 2008; 392:147-59. [DOI: 10.1007/s00216-008-2266-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
38
|
Froelich JM, Kaplinghat S, Reid GE. Automated neutral loss and data dependent energy resolved "pseudo MS3" for the targeted identification, characterization and quantitative analysis of methionine- containing peptides. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2008; 14:219-229. [PMID: 18756020 DOI: 10.1255/ejms.931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A strategy involving the fixed-charge sulfonium ion derivatization, stable isotope labeling, capillary high- performance liquid chromatography and automated data dependent neutral loss scan mode tandem mass spectrometry (MS/MS) and "pseudo multiple mass spectrometry (MS3)" product ion scans in a triple quadrupole mass spectrometer has been developed for the "targeted" gas-phase identification, characterization and quantitative analysis of low abundance methionine-containing peptides present within complex protein digests. Selective gas-phase "enrichment" and identification is performed via neutral loss scan mode MS/MS, by low energy collision-induced dissociation of the derivatized methionine side chain, resulting in the formation of a single characteristic product ion. Structural characterization of identified peptides is then achieved by automatically subjecting the characteristic neutral loss product ion to further dissociation by data dependent product ion scan mode pseudo MS3 under higher collision energy conditions. Quantitative analysis is achieved by measurement of the abundances of characteristic product ions formed by sequential neutral loss scan mode MS/MS experiments from "light" (12C) and "heavy" (13C) stable isotope encoded fixed-charge derivatized peptides. In contrast to MS-based quantitative analysis strategies, the neutral loss scan mode MS/MS method employed here was able to achieve accurate quantification for individual peptides at levels as low as 100 fmol and at abundance ratios ranging from 0.1 to 10, present within a complex protein digest.
Collapse
Affiliation(s)
- Jennifer M Froelich
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
39
|
Hoffert JD, Knepper MA. Taking aim at shotgun phosphoproteomics. Anal Biochem 2007; 375:1-10. [PMID: 18078798 DOI: 10.1016/j.ab.2007.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/14/2007] [Accepted: 11/17/2007] [Indexed: 01/20/2023]
Affiliation(s)
- Jason D Hoffert
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
40
|
Zhang Q, Wang Y. Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. J Proteome Res 2007; 6:4711-9. [PMID: 17960875 DOI: 10.1021/pr700571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chromosomal high-mobility group A (HMGA) proteins, composed of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation, and phosphorylation. Recently, it was found that the homeodomain-interacting protein kinase-2 (HIPK2), a newly identified serine/threonine kinase, co-immunoprecipitated with, and phosphorylated, HMGA1 proteins. However, the sites and the biological significance of the phosphorylation have not been elucidated. Here, we found that HIPK2 phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77, and HMGA1b at Thr-41 and Thr-66. In addition, we demonstrated that cdc2, which is known to phosphorylate HMGA1 proteins, could induce the phosphorylation of HMGA1 proteins at the same Ser/Thr sites. The two kinases, however, exhibited different site preferences for the phosphorylation: The preference for HIPK2 phosphorylation followed the order of Thr-77 > Thr-52 > Ser-35, whereas the order for cdc2 phosphorylation was Thr-52 > Thr-77 > Ser-35. Moreover, we found that the HIPK2-phosphorylated HMGA1a reduced the binding affinity of HMGA1a to human germ line promoter, and the drop in binding affinity induced by HIPK2 phosphorylation was lower than that introduced by cdc2 phosphorylation, which is consistent with the notion that the second AT-hook in HMGA1a is more important for DNA binding than the third AT-hook.
Collapse
|
41
|
Hung CW, Schlosser A, Wei J, Lehmann WD. Collision-induced reporter fragmentations for identification of covalently modified peptides. Anal Bioanal Chem 2007; 389:1003-16. [PMID: 17690871 DOI: 10.1007/s00216-007-1449-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/18/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Collision-induced reporter fragmentations of the currently most important covalent peptide modifications as detected by tandem mass spectrometry are summarized. These fragmentations comprise the formation of reporter ions, which are preferentially immonium ions, immonium ion-derived fragments or side chain fragments. In addition, the reporter neutral loss reactions for covalently modified amino acid residues are summarized. For each individual covalent modification which can be recognized by a reporter fragmentation, the accurate mass shift and the gross formula shift of the modified amino acid residue are given. The same set of data is provided for the reporter fragmentations. Finally, an extensive accurate mass and gross formula list is presented as supplementary material, describing mostly regular and modified y(1) and dipeptide a and b ions, which are helpful for identification of the peptide ends of covalently modified peptides.
Collapse
Affiliation(s)
- Chien-Wen Hung
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|