1
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
2
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
4
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Yadav KS, Sharma S, Londhe VY. Bio-tactics for neuroprotection of retinal ganglion cells in the treatment of glaucoma. Life Sci 2020; 243:117303. [DOI: 10.1016/j.lfs.2020.117303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/12/2020] [Indexed: 01/01/2023]
|
6
|
Sánchez-Vidaña DI, Chow JKW, Hu SQ, Lau BWM, Han YF. Molecular Targets of Bis (7)-Cognitin and Its Relevance in Neurological Disorders: A Systematic Review. Front Neurosci 2019; 13:445. [PMID: 31143096 PMCID: PMC6521802 DOI: 10.3389/fnins.2019.00445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
Background: The exact mechanisms involved in the pathogenesis of neurodegenerative conditions are not fully known. The design of drugs that act on multiple targets represents a promising approach that should be explored for more effective clinical options for neurodegenerative disorders. B7C is s synthetic drug that has been studied for over 20 years and represents a promising multi-target drug for the treatment of neurodegenerative disorders, such as AD. Aims: The present systematic review, thus, aims at examining existing studies on the effect of B7C on different molecular targets and at discussing the relevance of B7C in neurological disorders. Methods: A list of predefined search terms was used to retrieve relevant articles from the databases of Embase, Pubmed, Scopus, and Web of Science. The selection of articles was done by two independent authors, who were considering articles concerned primarily with the evaluation of the effect of B7C on neurological disorders. Only full-text articles written in English were included; whereas, systematic reviews, meta-analyses, book chapters, conference subtracts, and computational studies were excluded. Results: A total of 2,266 articles were retrieved out of which 41 articles were included in the present systematic review. The effect of B7C on molecular targets, including AChE, BChE, BACE-1, NMDA receptor, GABA receptor, NOS, and Kv4.2 potassium channels was evaluated. Moreover, the studies that were included assessed the effect of B7C on biological processes, such as apoptosis, neuritogenesis, and amyloid beta aggregation. The animal studies examined in the review focused on the effect of B7C on cognition and memory. Conclusions: The beneficial effects observed on different molecular targets and biological processes relevant to neurological conditions confirm that B7C is a promising multi-target drug with the potential to treat neurological disorders.
Collapse
Affiliation(s)
| | - Jason Ka Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sheng Quan Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer's disease. Life Sci 2018; 207:428-435. [DOI: 10.1016/j.lfs.2018.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022]
|
8
|
Liu H, Chen G, Zheng H, Qin H, Liang M, Feng K, Wu Z. Differences in atrial fibrillation‑associated proteins between the left and right atrial appendages from patients with rheumatic mitral valve disease: A comparative proteomic analysis. Mol Med Rep 2016; 14:4232-4242. [PMID: 27667121 PMCID: PMC5101960 DOI: 10.3892/mmr.2016.5776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2015] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
The majority of proteomic studies have focused on identifying atrial fibrillation (AF)-associated proteins in the right atrium (RA), thus potential differences in AF-associated proteins between the RA and left atrium (LA) remain unknown. The aim of the present study was to perform proteomic analysis to compare the potential differences in AF-associated proteins between the right atrial appendage (RAA) and left atrial appendage (LAA) in patients with rheumatic mitral valve disease (RMVD). RAA and LAA tissues were obtained from 18 patients with RMVD (10 with AF) during mitral valve replacement surgery. Two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) proteomics analysis was performed using these tissues to identify AF-associated proteins in RAA and LAA. Subsequently, the proteomics data was validated using western blot analysis of nine selected proteins. In RAA, 32 AF-associated proteins were significantly dysregulated (15 upregulated and 17 downregulated). In LAA, 31 AF-associated proteins were significantly dysregulated (13 upregulated and 18 downregulated). Among these AF-associated proteins, 17 were AF-associated in both RAA and LAA, 15 were AF-associated only in RAA, and 14 were AF-associated only in LAA. Amongst the differentially expressed proteins, western blot analysis validated the results for 6 AF-associated proteins, and demonstrated similar distributions in RAA and LAA compared with the 2-D DIGE results. Of these proteins, 2 proteins were AF-associated in both RAA and LAA, 2 were AF-associated only in RAA, and 2 were AF-associated only in LAA. Additionally, the different distributions of AF-associated proteins in the RAA and LAA of patients with RMVD was analyzed, which may reflect the different regulatory mechanisms of the RA and LA in AF. These findings may provide new insights into the underlying molecular mechanisms of AF in patients with RMVD.
Collapse
Affiliation(s)
- Hai Liu
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guangxian Chen
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongsheng Zheng
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Han Qin
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mengya Liang
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kangni Feng
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhongkai Wu
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
9
|
Wang XF, Zhang XY, Gao X, Liu XX, Wang YH. Proteomic Profiling of a Respiratory Syncytial Virus-Infected Rat Pneumonia Model. Jpn J Infect Dis 2016; 69:285-92. [DOI: 10.7883/yoken.jjid.2015.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xue-Feng Wang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| | - Xiu-Ying Zhang
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University
| | - Xiao-Xue Liu
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| | - Yi-Huan Wang
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| |
Collapse
|
10
|
Qian S, He L, Mak M, Han Y, Ho CY, Zuo Z. Synthesis, biological activity, and biopharmaceutical characterization of tacrine dimers as acetylcholinesterase inhibitors. Int J Pharm 2014; 477:442-53. [PMID: 25445524 DOI: 10.1016/j.ijpharm.2014.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2014] [Revised: 09/19/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022]
Abstract
Tacrine (THA), as the first approved acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD), has been extensively investigated in last seven decades. After dimerization of THA via a 7-carbon alkyl spacer, bis(7)-tacrine (B7T) showed much potent anti-AChE activity than THA. We here report synthesis, biological evaluation and biopharmaceutical characterization of six THA dimers referable to B7T. According to IC50 values, the in vitro anti-AChE activities of THA dimers were up to 300-fold more potent and 200-fold more selective than that of THA. In addition, the anti-AChE activities of THA dimers were found to be associated with the type and length of the linkage. All studied THA dimers showed much lower cytotoxicity than B7T, but like B7T, they demonstrated much lower absorptive permeabilities than that of THA on Caco-2 monolayer model. In addition, all THA dimers demonstrated significant efflux transport (efflux ratio >4), indicating that the limited permeability could be associated with the efflux transport during absorption process. Moreover, the dimer with higher Log P value was accompanied with higher permeability but lower aqueous solubility. A balanced consideration of activity, solubility, cytotoxicity and permeability should be conducted in selection of the potential candidates for further in vivo investigation.
Collapse
Affiliation(s)
- Shuai Qian
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Lisi He
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Marvin Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Chun-Yu Ho
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Department of Chemistry, South University of Science and Technology of China, Shenzhen, PR China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J. Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 2014; 29:193-205. [PMID: 24458787 PMCID: PMC3930846 DOI: 10.1007/s11011-014-9490-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/31/2013] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
Abstract
Glutamate excitotoxicity has been implicated as one of the pathological mechanisms contributing to neuronal cell death and is involved in many neurological disorders. Stem cell transplantation is a promising approach for the treatment of nervous system damage or diseases. Previous studies have shown that mesenchymal stem cells (MSCs) have important therapeutic effects in experimental animal and preclinical disease model of central nervous system pathology. However, it is not well understood whether neurogenesis of MSCs or MSC conditioned-medium (CM) containing microparticles mediates therapeutic effects. Here, we investigated the neuroprotective effects of human adipose-derived MSCs (AMSCs) on cortical neurons using models of glutamate excitotoxicity. Following exposure to glutamate (100 μM, 15 min), cortical neurons were co-cultured with either AMSCs separated by a semiporous membrane (prohibiting direct cell-cell contact) or with AMSC-CM for 18 h. Compared to untreated control groups, AMSCs and AMSC-CM partially and similarly reduced neuronal cell damages, as indicated by reduced LDH release, a decreased number of trypan-positive cells and a decline in the number of apoptotic nuclei. Protection by CM was associated with increased GAP-43 expression and an elevated number of GAP-43-positive neurites. Furthermore, CM increased levels of ATP, NAD(+) and NADH and the ratio of NAD(+)/NADH, while preventing a glutamate-induced decline in mitochondrial membrane potential. These results demonstrate that AMSC-CM mediates direct neuroprotection by inhibiting neuronal cell damage/apoptosis, promoting nerve regeneration and repair, and restoring bioenergy following energy depletion caused by glutamate excitotoxicity.
Collapse
Affiliation(s)
- Peng Hao
- Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011 People’s Republic of China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044 People’s Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhanhua Liang
- Department of Neuroscience, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Hua Piao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 People’s Republic of China
| | - Xiaofei Ji
- Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011 People’s Republic of China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044 People’s Republic of China
- Department of Neuroscience, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Yachen Wang
- Department of Neuroscience, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Yong Liu
- Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011 People’s Republic of China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044 People’s Republic of China
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Rutao Liu
- Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011 People’s Republic of China
| | - Jing Liu
- Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011 People’s Republic of China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044 People’s Republic of China
| |
Collapse
|
12
|
Tribl F, Meyer HE, Marcus K. Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Rev Proteomics 2014; 5:333-51. [DOI: 10.1586/14789450.5.2.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
|
13
|
Zheng Y, Lin Y, Situ D, Jiang L, Su X, Long H. Analysis of differently expressed proteins involved in metastatic niche of lung. Thorac Cancer 2013; 4:385-394. [PMID: 28920209 DOI: 10.1111/1759-7714.12033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2012] [Accepted: 01/30/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The "seed and soil" hypothesis for metastasis was a pivotal milestone in the study of malignant disease. Recently, growing studies have focused on the tumor secretory factors that may mediate preparation of the "metastatic soil." A suitable environment for the metastatic lesions was created by many inflammatory cytokines in the lung, whichwas verified by in vivo experimental models. In 2005, a pre-metastatic niche and metastatic niche modelwere suggested by David Lyden and Bethan Psaila, to delineate the interactions between malignant cells and their microenvironment at the metastatic site, whichsoon became the most importanthypothesis. However, the evidence is limited to animal models. More clinical evidence is needed to support this hypothesis. METHODS Human lung specimens were taken from different regions within metastatic lung tissue and normal lung tissue. Differently expressed proteins were analyzed by using the two dimensional fluorescent difference gel electrophoresis (2-D DIGE) technology: about 0.5-1 cm (Tissue 1) of lung tissue was taken adjacent to the metastatic tumor; about 1 cm (Tissue 2) of lung tissue was taken far away from the metastatic tumor; and normal lung tissue of the inflammatory pseudotumor (Tissue 3) was taken at least 3 cm away from the pseudotumor. We usedmatrix-assisted laser desorption/ ionization time of flight mass spectrometry (MALDI-TOF/TOFMS) analysis to identify differently expressed proteins in T1, T2, andT3 samples. RESULTS T1 samples were different from T2 samples in the expression of 27 proteins. T2 samples had different expressions in 24 proteins, compared to T3 samples.Nine proteins were expressed differently between T1 and T3 samples. These proteins are mainly involved inenergy metabolism, protect the tumor cell from immunologic engraftment of metastatic tumor cells, and migration. Some of thesehave been reported to be related to the tumor metastatic niche hypothesis: Type VI collagen, heat shock protein 90, and Fibrinogen. CONCLUSION The type VI collagen, heat shock protein 90, and Fibrinogen were selected aspotential niche proteins. These findings support the metastatic niche hypothesis and encourage further studies.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yongbin Lin
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dongrong Situ
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Long Jiang
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Su
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Hao Long
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Perihematomal glutamate level is associated with the blood-brain barrier disruption in a rabbit model of intracerebral hemorrhage. SPRINGERPLUS 2013; 2:358. [PMID: 23961420 PMCID: PMC3738910 DOI: 10.1186/2193-1801-2-358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/11/2013] [Accepted: 07/08/2013] [Indexed: 02/04/2023]
Abstract
Objective To observe the relationship between the perihematomal glutamate levels and the blood–brain barrier (BBB) permeability in a rabbit model of intracerebral hemorrhage (ICH). Methods Seventy-two rabbits were randomly divided into an intracerebral hemorrhage (ICH) model group and a normal control (NC) group, and each group of 36 rabbits was subsequently divided into 6, 12, 18, 24, 48 and 72 h groups (n = 6 each). An ICH model was induced by stereotactic injection of autologous, arterial, non-anticoagulated blood into rabbit basal ganglia. The same procedures were performed in the NC group, but blood was not injected. The rabbits were sacrificed at specific time points after the experiment began depending on their group. Perihematomal brain tissues were collected to determine glutamate levels, BBB permeability and brain water content (BWC). Results All of the assessed parameters were increased 6 hour after blood infusion and continued to gradually increase, peaking at 48 hours. Differences were observed when ICH values were compared with those of the NC group (p < 0.05). Conclusions Perihematomal glutamate increased significantly after ICH. High levels of glutamate are closely associated with BBB disruption and the brain edema. Therefore, glutamate may play an important role in the pathogenesis of secondary brain injury after (ICH).
Collapse
|
15
|
Deng L, Jia HL, Liu CW, Hu KH, Yin GQ, Ye JW, He CH, Chen JH, Xie YP, Dang R, Zhang L, Liu NY, Zhu L, Zhang L. Analysis of differentially expressed proteins involved in hand, foot and mouth disease and normal sera. Clin Microbiol Infect 2012; 18:E188-96. [PMID: 22497606 DOI: 10.1111/j.1469-0691.2012.03836.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
We implemented 2-D DIGE technology on proteins prepared from serum obtained from children with hand, foot and mouth disease (HFMD) and controls, to study the differentially expressed proteins in control and HFMD serum samples. Proteins found to be differentially expressed were identified with matrix-assisted laser desorption/ionization time-of-flight/ time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis. We identified 30 proteins from mild HFMD samples and 39 proteins from severe HFMD samples, compared with the normal controls. 25 proteins among them (14 up-regulated and 11 down-regulated proteins) are found in both HFMD groups. Classification analysis and protein-protein interaction map showed that they associate with multiple functional groups, including transporter activity and atalytic activity. These findings build up a comprehensive profile of the HFMD proteome and provide a useful basis for further analysis of the pathogenic mechanism and the regulatory network of HFMD.
Collapse
Affiliation(s)
- L Deng
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 2012; 5:11. [PMID: 22424240 PMCID: PMC3337254 DOI: 10.1186/1756-8722-5-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2012] [Accepted: 03/18/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
17
|
Gao X, Pang J, Li LY, Liu WP, Di JM, Sun QP, Fang YQ, Liu XP, Pu XY, He D, Li MT, Su ZL, Li BY. Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasis-suppressor in prostate cancer. Oncogene 2010; 29:4555-66. [PMID: 20543870 DOI: 10.1038/onc.2010.213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Metastasis is the chief cause of mortality from cancer, but the mechanisms leading to metastasis are poorly understood. We used a proteomics approach to screen for metastasis-associated proteins and found that collapsin response mediator protein-4 (CRMP4) expression was inversely associated with the lymph node metastasis of prostate cancer (PCa). Subsequent in vitro and in vivo studies revealed that overexpression of CRMP4 not only suppressed the invasion ability of PCa cells, but also strongly inhibited tumor metastasis in an animal model. Furthermore, methylation of a CpG island within the promoter region of the CRMP4 gene is responsible for downregulation of CRMP4 expression. Thus, in this study, we show new function of CRMP4 as a metastasis-suppressor in PCa. The findings provide new mechanistic insights into metastasis and therapeutic potential for this most common male cancer.
Collapse
Affiliation(s)
- X Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pang J, Liu WP, Liu XP, Li LY, Fang YQ, Sun QP, Liu SJ, Li MT, Su ZL, Gao X. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res 2010; 9:216-26. [PMID: 19894759 DOI: 10.1021/pr900953s] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Current predictive tools and imaging modalities are not accurate enough for preoperative diagnosis of lymph node metastatic prostate cancer (LNM PCa). Proteomic analysis is introduced to screen potential biomarkers for early detection of LNM PCa. In our initial study, protein samples from localized and LNM PCa as well as benign prostatic hyperplasia tissues were analyzed using two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) coupled with MALDI-TOF/TOF MS. We identified 58 proteins that were differentially expressed in the LNM PCa group relative to the localized PCa group. Six of these proteins, e-FABP5, MCCC2, PPA2, Ezrin, SLP2, and SM22, are functionally relevant to cancer metastasis. Expression of these proteins was therefore further validated in tissue samples from the original cohort and also from a larger, independent cohort of patients using real time PCR, Western blotting, and immunohistochemistry staining. In addition, the serum levels of e-FABP5 were also examined by ELISA. Relative to localized PCa tissues, LNM PCa tissues had increased expression of e-FABP5, MCCC2, PPA2, Ezrin, and SLP2 and decreased expression of SM22. Patients with LNM PCa had significantly higher levels of serum e-FABP5. This study presents evidence that increased expression of e-FABP5, MCCC2, PPA2, Ezrin, and SLP2 and decreased expression of SM22 are useful diagnostic markers for the existence of LNM PCa.
Collapse
Affiliation(s)
- Jun Pang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heterogeneity of nervous system mitochondria: Location, location, location! Exp Neurol 2009; 218:293-307. [DOI: 10.1016/j.expneurol.2009.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023]
|
20
|
Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW. Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 2009; 10:191-203. [PMID: 19241104 DOI: 10.1007/s10162-009-0158-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022] Open
Abstract
The hair cells of the larval zebrafish lateral line provide a useful preparation in which to study hair cell death and to screen for genes and small molecules that modulate hair cell toxicity. We recently reported preliminary results from screening a small-molecule library for compounds that inhibit aminoglycoside-induced hair cell death. To potentially reduce the time required for development of drugs and drug combinations that can be clinically useful, we screened a library of 1,040 FDA-approved drugs and bioactive compounds (NINDS Custom Collection II). Seven compounds that protect against neomycin-induced hair cell death were identified. Four of the seven drugs inhibited aminoglycoside uptake, based on Texas-Red-conjugated gentamicin uptake. The activities of two of the remaining three drugs were evaluated using an in vitro adult mouse utricle preparation. One drug, 9-amino-1,2,3,4-tetrahydroacridine (tacrine) demonstrated conserved protective effects in the mouse utricle. These results demonstrate that the zebrafish lateral line can be used to screen successfully for drugs within a library of FDA-approved drugs and bioactives that inhibit hair cell death in the mammalian inner ear and identify tacrine as a promising protective drug for future studies.
Collapse
Affiliation(s)
- Henry C Ou
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Li W, Mak M, Jiang H, Wang Q, Pang Y, Chen K, Han Y. Novel anti-Alzheimer's dimer Bis(7)-cognitin: cellular and molecular mechanisms of neuroprotection through multiple targets. Neurotherapeutics 2009; 6:187-201. [PMID: 19110209 PMCID: PMC5084266 DOI: 10.1016/j.nurt.2008.10.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative brain disorder that has emerged as one of the major public health problems in adults. Unfortunately, its molecular pathology and therapeutic strategies remain elusive. Because there are multiple factors closely indicated in the pathogenesis of AD, multiple drug therapy will be required to address the varied pathological aspects of this disease. Existing pharmacological approaches with one-molecule-one-target are limited in their ability to modify the pathology of AD. Novel therapeutics strategies comprise multifunctional compounds specifically designed to target concurrently on different sites at multifactorial etiopathogenesis of AD, thereby providing greater therapeutic efficacy. Over the past decade, our group has developed several series of dimeric acetylcholinesterase (AChE) inhibitors derived from tacrine and huperzine A, a unique anti-Alzheimer's drug originally discovered from a traditional Chinese medicinal plant. Bis(7)-Cognitin, one of our novel dimers, through inhibition of AChE, N-methyl-D-aspartate receptor, nitric oxide synthase, and amyloid precursor protein/beta-amyloid cascade concurrently, possesses remarkable neuroprotective activities. More importantly, the synergism between these targets might serve as one of the most effective therapeutic strategies to arrest/modify pathological process of AD in addition to improving the cognitive functions for AD.
Collapse
Affiliation(s)
- Wenming Li
- Department of Applied Biology & Chemical Technology, Institute of Modern Chinese Medicine, the Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Marvin Mak
- Department of Applied Biology & Chemical Technology, Institute of Modern Chinese Medicine, the Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hualiang Jiang
- grid.419093.60000000406198396Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, 201203 Shanghai, China
| | - Qinwen Wang
- grid.203507.30000000089505267Department of Physiology, Medical School, Ningbo University, 315211 Ningbo, China
| | - Yuanping Pang
- Mayo Foundation for Medical Education and Research, 55905 Rochester, MN
| | - Kaixian Chen
- grid.419093.60000000406198396Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, 201203 Shanghai, China
| | - Yifan Han
- Department of Applied Biology & Chemical Technology, Institute of Modern Chinese Medicine, the Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
22
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
|
23
|
Zhao Y, Li W, Chow PC, Lau DT, Lee NT, Pang Y, Zhang X, Wang X, Han Y. Bis(7)-tacrine, a promising anti-Alzheimer's dimer, affords dose- and time-dependent neuroprotection against transient focal cerebral ischemia. Neurosci Lett 2008; 439:160-4. [DOI: 10.1016/j.neulet.2008.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2007] [Revised: 03/05/2008] [Accepted: 05/05/2008] [Indexed: 11/27/2022]
|
24
|
Kang D, Oh S, Reschiglian P, Moon MH. Separation of mitochondria by flow field-flow fractionation for proteomic analysis. Analyst 2008; 133:505-15. [DOI: 10.1039/b716851a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|